scispace - formally typeset
Search or ask a question

Showing papers on "Oxidative stress published in 2005"


Journal ArticleDOI
TL;DR: This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.
Abstract: Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53. Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.

4,272 citations


Journal ArticleDOI
15 Jul 2005-Science
TL;DR: It is shown that mice expressing a proofreading-deficient version of the mitochondrial DNA polymerase g (POLG) accumulate mt DNA mutations and display features of accelerated aging, suggesting that accumulation of mtDNA mutations that promote apoptosis may be a central mechanism driving mammalian aging.
Abstract: Mutations in mitochondrial DNA (mtDNA) accumulate in tissues of mammalian species and have been hypothesized to contribute to aging. We show that mice expressing a proofreading-deficient version of the mitochondrial DNA polymerase g (POLG) accumulate mtDNA mutations and display features of accelerated aging. Accumulation of mtDNA mutations was not associated with increased markers of oxidative stress or a defect in cellular proliferation, but was correlated with the induction of apoptotic markers, particularly in tissues characterized by rapid cellular turnover. The levels of apoptotic markers were also found to increase during aging in normal mice. Thus, accumulation of mtDNA mutations that promote apoptosis may be a central mechanism driving mammalian aging.

1,920 citations


Journal ArticleDOI
24 Jun 2005-Science
TL;DR: Transgenic mice that overexpress human catalase localized to the peroxisome, the nucleus, or mitochondria were generated and the importance of mitochondria as a source of radicals was reinforced.
Abstract: To determine the role of reactive oxygen species in mammalian longevity, we generated transgenic mice that overexpress human catalase localized to the peroxisome, the nucleus, or mitochondria (MCAT). Median and maximum life spans were maximally increased (averages of 5 months and 5.5 months, respectively) in MCAT animals. Cardiac pathology and cataract development were delayed, oxidative damage was reduced, H2O2 production and H2O2-induced aconitase inactivation were attenuated, and the development of mitochondrial deletions was reduced. These results support the free radical theory of aging and reinforce the importance of mitochondria as a source of these radicals.

1,629 citations


Journal ArticleDOI
TL;DR: The main goal of the present paper is to review the fluorescence methodologies that have been used for detecting ROS in biological and non-biological media.

1,536 citations


Journal ArticleDOI
TL;DR: A constant supply of oxygen is indispensable for cardiac viability and function, and oxygen is a major determinant of cardiac gene expression, and a critical participant in the formation of ROS and numerous other cellular processes.
Abstract: A constant supply of oxygen is indispensable for cardiac viability and function. However, the role of oxygen and oxygen-associated processes in the heart is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death. As oxygen is a major determinant of cardiac gene expression, and a critical participant in the formation of ROS and numerous other cellular processes, consideration of its role in the heart is essential in understanding the pathogenesis of cardiac dysfunction.

1,378 citations


Journal ArticleDOI
TL;DR: The role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes is reviewed and female infertility and how it influences the outcomes of assisted reproductive techniques is discussed.
Abstract: In a healthy body, ROS (reactive oxygen species) and antioxidants remain in balance When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS) occurs OS influences the entire reproductive lifespan of a woman and even thereafter (ie menopause) OS results from an imbalance between prooxidants (free radical species) and the body's scavenging ability (antioxidants) ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy It has been suggested that OS modulates the age-related decline in fertility It plays a role during pregnancy and normal parturition and in initiation of preterm labor Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal embryopathies, preterm labour and preeclampsia and gestational diabetes The review also addresses the growing literature on the role of nitric oxide species in female reproduction The involvement of nitric oxide species in regulation of endometrial and ovarian function, etiopathogenesis of endometriosis, and maintenance of uterine quiescence, initiation of labour and ripening of cervix at parturition is discussed Complex interplay between cytokines and oxidative stress in the etiology of female reproductive disorders is discussed Oxidant status of the cell modulates angiogenesis, which is critical for follicular growth, corpus luteum formation endometrial differentiation and embryonic growth is also highlighted in the review Strategies to overcome oxidative stress and enhance fertility, both natural and assisted are delineated Early interventions being investigated for prevention of preeclampsia are enumerated Trials investigating combination intervention strategy of vitamin E and vitamin C supplementation in preventing preeclampsia are highlighted Antioxidants are powerful and there are few trials investigating antioxidant supplementation in female reproduction However, before clinicians recommend antioxidants, randomized controlled trials with sufficient power are necessary to prove the efficacy of antioxidant supplementation in disorders of female reproduction Serial measurement of oxidative stress biomarkers in longitudinal studies may help delineate the etiology of some of the diosorders in female reproduction such as preeclampsia

1,336 citations


Journal ArticleDOI
TL;DR: It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.
Abstract: Oxidative stress is considered a major contributor to etiology of both "normal" senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.

1,312 citations


Journal ArticleDOI
TL;DR: This review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.
Abstract: The contamination of soils and water with metals has created a major environmental problem, leading to considerable losses in plant productivity and hazardous health effects. Exposure to toxic metals can intensify the production of reactive oxygen species (ROS), which are continuously produced in both unstressed and stressed plants cells. Some of the ROS species are highly toxic and must be detoxified by cellular stress responses, if the plant is to survive and grow. The aim of this review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.

1,065 citations


Journal ArticleDOI
TL;DR: Antioxidant-specific gene induction, involved in xenobiotic metabolism, is mediated by the "ant antioxidant responsive element" (ARE) commonly found in the promoter region of such genes, but has not been found in plant Gst genes.
Abstract: Molecular oxygen (O2) is the premier biological electron acceptor that serves vital roles in fundamental cellular functions. However, with the beneficial properties of O2 comes the inadvertent formation of reactive oxygen species (ROS) such as superoxide (O2*-), hydrogen peroxide, and hydroxyl radical (OH*). If unabated, ROS pose a serious threat to or cause the death of aerobic cells. To minimize the damaging effects of ROS, aerobic organisms evolved non-enzymatic and enzymatic antioxidant defenses. The latter include catalases, peroxidases, superoxide dismutases, and glutathione S-transferases (GST). Cellular ROS-sensing mechanisms are not well understood, but a number of transcription factors that regulate the expression of antioxidant genes are well characterized in prokaryotes and in yeast. In higher eukaryotes, oxidative stress responses are more complex and modulated by several regulators. In mammalian systems, two classes of transcription factors, nuclear factor kB and activator protein-1, are involved in the oxidative stress response. Antioxidant-specific gene induction, involved in xenobiotic metabolism, is mediated by the "antioxidant responsive element" (ARE) commonly found in the promoter region of such genes. ARE is present in mammalian GST, metallothioneine-I and MnSod genes, but has not been found in plant Gst genes. However, ARE is present in the promoter region of the three maize catalase (Cat) genes. In plants, ROS have been implicated in the damaging effects of various environmental stress conditions. Many plant defense genes are activated in response to these conditions, including the three maize Cat and some of the superoxide dismutase (Sod) genes.

1,057 citations


Journal ArticleDOI
TL;DR: Recent advances in understanding of the stimuli that trigger senescence, the molecular pathways activated by these stimuli, and the manner by which these signals determine the entry of a population of cells intosenescence are reviewed.

1,006 citations


Journal ArticleDOI
TL;DR: The results suggest that intratracheal instillation of ultrafine TiO(2) particles may cause an inflammatory response.

Journal ArticleDOI
TL;DR: New strategies with classic as well as new antioxidants should be implemented in the treatment of diabetes, as it is becoming clear that rather than merely scavenging reactive radicals, a more comprehensive approach aimed at preventing the generation of these reactive species may prove more beneficial.
Abstract: Cardiovascular complications, characterized by endothelial dysfunction and accelerated atherosclerosis, are the leading cause of morbidity and mortality associated with diabetes. There is growing evidence that excess generation of highly reactive free radicals, largely due to hyperglycemia, causes oxidative stress, which further exacerbates the development and progression of diabetes and its complications. Overproduction and/or insufficient removal of these free radicals result in vascular dysfunction, damage to cellular proteins, membrane lipids and nucleic acids. Despite overwhelming evidence on the damaging consequences of oxidative stress and its role in experimental diabetes, large scale clinical trials with classic antioxidants failed to demonstrate any benefit for diabetic patients. As our understanding of the mechanisms of free radical generation evolves, it is becoming clear that rather than merely scavenging reactive radicals, a more comprehensive approach aimed at preventing the generation of these reactive species as well as scavenging may prove more beneficial. Therefore, new strategies with classic as well as new antioxidants should be implemented in the treatment of diabetes.

Journal ArticleDOI
TL;DR: The finding that a diet rich in antioxidants or the elimination of ROS by antioxidant compounds prevents the development of certain cancers provided the setting for subsequent investigation of the tumorigenic actions of reactive oxygen species.
Abstract: The generation of reactive oxygen radicals in mammalian cells profoundly affects numerous critical cellular functions, and the absence of efficient cellular detoxification mechanisms which remove these radicals can result in several human diseases. Growing evidence suggests that reactive oxygen species (ROS) within cells act as second messengers in intracellular signaling cascades which induce and maintain the oncogenic phenotype of cancer cells. ROS are tumorigenic by virtue of their ability to increase cell proliferation, survival, cellular migration, and also by inducing DNA damage leading to genetic lesions that initiate tumorigenicity and sustain subsequent tumor progression. However, it is also known that ROS can induce cellular senescence and cell death and can therefore function as anti-tumorigenic agents. Therefore, the mechanisms by which cells respond to reactive oxygen species depends on the molecular background of cell and tissues, the location of ROS production and the concentration of individual ROS species. Carcinoma cells produce ROS at elevated rates in vitro, and in vivo many tumors appear persistent to oxidative stress. Thus, the finding that a diet rich in antioxidants or the elimination of ROS by antioxidant compounds prevents the development of certain cancers provided the setting for subsequent investigation of the tumorigenic actions of reactive oxygen species. This review outlines the current knowledge on the various roles of ROS in tumor development and progression.

Journal ArticleDOI
TL;DR: In this paper, the relationship between diabetes and oxidative stress and use of antioxidants in the management of diabetes and its complications have been well reviewed and it has been suggested that enhanced production of free radicals and antioxidant stress is central event to the development of diabetic complications.

Journal ArticleDOI
TL;DR: The current evidence regarding the antioxidant role of uric acid is presented and it is suggested that it has an important role as an oxidative stress marker and a potential therapeutic roles as an antioxidant.
Abstract: Uric acid is the final product of purine metabolism in humans. The final two reactions of its production catalyzing the conversion of hypoxanthine to xanthine and the latter to uric acid are catalysed by the enzyme xanthine oxidoreductase, which may attain two inter-convertible forms, namely xanthine dehydrogenase or xanthine oxidase. The latter uses molecular oxygen as electron acceptor and generates superoxide anion and other reactive oxygen products. The role of uric acid in conditions associated with oxidative stress is not entirely clear. Evidence mainly based on epidemiological studies suggests that increased serum levels of uric acid are a risk factor for cardiovascular disease where oxidative stress plays an important pathophysiological role. Also, allopurinol, a xanthine oxidoreductase inhibitor that lowers serum levels of uric acid exerts protective effects in situations associated with oxidative stress (e.g. ischaemia-reperfusion injury, cardiovascular disease). However, there is increasing experimental and clinical evidence showing that uric acid has an important role in vivo as an antioxidant. This review presents the current evidence regarding the antioxidant role of uric acid and suggests that it has an important role as an oxidative stress marker and a potential therapeutic role as an antioxidant. Further well designed clinical studies are needed to clarify the potential use of uric acid (or uric acid precursors) in diseases associated with oxidative stress.

Journal ArticleDOI
TL;DR: Oxidative stress-induced DNA damage appears to an important mechanism of action of urban particulate air pollution and related biomarkers and personal monitoring may be useful tools for risk characterization.
Abstract: Exposure to ambient air particulate matter (PM) is associated with pulmonary and cardiovascular diseases and cancer. The mechanisms of PM-induced health effects are believed to involve inflammation and oxidative stress. The oxidative stress mediated by PM may arise from direct generation of reactive oxygen species from the surface of particles, soluble compounds such as transition metals or organic compounds, altered function of mitochondria or NADPH-oxidase, and activation of inflammatory cells capable of generating ROS and reactive nitrogen species. Resulting oxidative DNA damage may be implicated in cancer risk and may serve as marker for oxidative stress relevant for other ailments caused by particulate air pollution. There is overwhelming evidence from animal experimental models, cell culture experiments, and cell free systems that exposure to diesel exhaust and diesel exhaust particles causes oxidative DNA damage. Similarly, various preparations of ambient air PM induce oxidative DNA damage in in vitro systems, whereas in vivo studies are scarce. Studies with various model/surrogate particle preparations, such as carbon black, suggest that the surface area is the most important determinant of effect for ultrafine particles (diameter less than 100 nm), whereas chemical composition may be more important for larger particles. The knowledge concerning mechanisms of action of PM has prompted the use of markers of oxidative stress and DNA damage for human biomonitoring in relation to ambient air. By means of personal monitoring and biomarkers a few studies have attempted to characterize individual exposure, explore mechanisms and identify significant sources to size fractions of ambient air PM with respect to relevant biological effects. In these studies guanine oxidation in DNA has been correlated with exposure to PM(2.5) and ultrafine particles outdoor and indoor. Oxidative stress-induced DNA damage appears to an important mechanism of action of urban particulate air pollution. Related biomarkers and personal monitoring may be useful tools for risk characterization.

Journal ArticleDOI
TL;DR: It is suggested that QE treatment has protective effect in diabetes by decreasing oxidative stress and preservation of pancreatic beta-cell integrity.

Journal ArticleDOI
20 May 2005-Science
TL;DR: An evolutionarily conserved interaction of β-catenin with FOXO transcription factors, which are regulated by insulin and oxidative stress signaling, is reported, demonstrating a role for β-Catenin in regulating FOXO function that is particularly important under conditions of oxidative stress.
Abstract: beta-Catenin is a multifunctional protein that mediates Wnt signaling by binding to members of the T cell factor (TCF) family of transcription factors. Here, we report an evolutionarily conserved interaction of beta-catenin with FOXO transcription factors, which are regulated by insulin and oxidative stress signaling. beta-Catenin binds directly to FOXO and enhances FOXO transcriptional activity in mammalian cells. In Caenorhabditis elegans, loss of the beta-catenin BAR-1 reduces the activity of the FOXO ortholog DAF-16 in dauer formation and life span. Association of beta-catenin with FOXO was enhanced in cells exposed to oxidative stress. Furthermore, BAR-1 was required for the oxidative stress-induced expression of the DAF-16 target gene sod-3 and for resistance to oxidative damage. These results demonstrate a role for beta-catenin in regulating FOXO function that is particularly important under conditions of oxidative stress.

Journal ArticleDOI
TL;DR: It is hypothesized that a sudden decline of mitochondrial ROS production converts cells or their microenvironment into a "ROS sink" represented by the instantly released excessive capacity of ROS-detoxification mechanisms.

Journal ArticleDOI
TL;DR: DJ-1 protects against neuronal oxidative stress, and loss of DJ-1 may lead to Parkinson's disease by conferring hypersensitivity to dopaminergic insults.
Abstract: Mutations of the DJ-1 (PARK7) gene are linked to familial Parkinson's disease. We used gene targeting to generate DJ-1-deficient mice that were viable, fertile, and showed no gross anatomical or neuronal abnormalities. Dopaminergic neuron numbers in the substantia nigra and fiber densities and dopamine levels in the striatum were normal. However, DJ-1-/- mice showed hypolocomotion when subjected to amphetamine challenge and increased striatal denervation and dopaminergic neuron loss induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine. DJ-1-/-embryonic cortical neurons showed increased sensitivity to oxidative, but not nonoxidative, insults. Restoration of DJ-1 expression to DJ-1-/- mice or cells via adenoviral vector delivery mitigated all phenotypes. WT mice that received adenoviral delivery of DJ-1 resisted 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine-induced striatal damage, and neurons overexpressing DJ-1 were protected from oxidative stress in vitro. Thus, DJ-1 protects against neuronal oxidative stress, and loss of DJ-1 may lead to Parkinson's disease by conferring hypersensitivity to dopaminergic insults.

Journal ArticleDOI
TL;DR: It is concluded that measurements of MDA and isoprostanes in plasma and urine as well as 8-OHdG in urine are potential candidates for general biomarkers of oxidative stress.

Journal ArticleDOI
TL;DR: Nitric oxide is a well-known vasorelaxant agent, but it works as a neurotransmitter when produced by neurons and is also involved in defense functions when it is produced by immune and glial cells.

Journal ArticleDOI
TL;DR: Evidence of oxidative stress in aging brain, some of the most important neurodegenerative diseases, and in two common and highly disabling vascular pathologies--stroke and cardiac failure are reviewed.

Journal ArticleDOI
13 Jan 2005-Oncogene
TL;DR: Mice deficient in CuZn superoxide dismutase showed no overt abnormalities during development and early adulthood, but had a reduced lifespan and increased incidence of neoplastic changes in the liver, which likely contributes to hepatocarcinogenesis later in life.
Abstract: Mice deficient in CuZn superoxide dismutase (CuZnSOD) showed no overt abnormalities during development and early adulthood, but had a reduced lifespan and increased incidence of neoplastic changes in the liver. Greater than 70% of Sod1−/− mice developed liver nodules that were either nodular hyperplasia or hepatocellular carcinoma (HCC). Cross-sectional studies with livers collected from Sod1−/− and age-matched +/+ controls revealed extensive oxidative damage in the cytoplasm and, to a lesser extent, in the nucleus and mitochondria from as early as 3 months of age. A marked reduction in cytosolic aconitase, increased levels of 8-oxo dG and F2-isoprostanes, and a moderate reduction in glutathione peroxidase activities and porin levels were observed in all age groups of Sod1−/− mice examined. There were also age-related reductions in Mn superoxide dismutase activities and carbonic anhydrase III. Parallel to the biochemical changes, there were progressive increases in the DNA repair enzyme APEX1, the cell cycle control proteins cyclin D1 and D3, and the hepatocyte growth factor receptor Met. Increased cell proliferation in the presence of persistent oxidative damage to macromolecules likely contributes to hepatocarcinogenesis later in life.

Journal ArticleDOI
TL;DR: The results suggest that Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis and may regulate a collection of transcripts involved in the response ofArabidopsis to high light and oxidative stress.
Abstract: Plant acclimation to environmental stress is controlled by a complex network of regulatory genes that compose distinct stress-response regulons. In contrast to many signaling and regulatory genes that are stress specific, the zinc-finger protein Zat12 responds to a large number of biotic and abiotic stresses. Zat12 is thought to be involved in cold and oxidative stress signaling in Arabidopsis (Arabidopsis thaliana); however, its mode of action and regulation are largely unknown. Using a fusion between the Zat12 promoter and the reporter gene luciferase, we demonstrate that Zat12 expression is activated at the transcriptional level during different abiotic stresses and in response to a wound-induced systemic signal. Using Zat12 gain- and loss-of-function lines, we assign a function for Zat12 during oxidative, osmotic, salinity, high light, and heat stresses. Transcriptional profiling of Zat12-overexpressing plants and wild-type plants subjected to H2O2 stress revealed that constitutive expression of Zat12 in Arabidopsis results in the enhanced expression of oxidative- and light stress-response transcripts. Under specific growth conditions, Zat12 may therefore regulate a collection of transcripts involved in the response of Arabidopsis to high light and oxidative stress. Our results suggest that Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis.

Journal ArticleDOI
TL;DR: It is shown that Klotho protein increases resistance to oxidative stress at the cellular and organismal level in mammals and potentially contributes to the anti-aging properties of klotho.

Journal ArticleDOI
TL;DR: Recent evidence suggests ROS are also important as second messengers in the regulation of intracellular signaling pathways and, ultimately, gene expression in diabetes.
Abstract: The morbidity and mortality associated with diabetes is the result of the myriad complications related to the disease One of the most explored hypotheses to explain the onset of complications is a hyperglycemia-induced increase in oxidative stress Reactive oxygen species (ROS) are produced by oxidative phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase (NADPH), xanthine oxidase, the uncoupling of lipoxygenases, cytochrome P450 monooxygenases, and glucose autoxidation Once formed, ROS deplete antioxidant defenses, rendering the affected cells and tissues more susceptible to oxidative damage Lipid, DNA, and protein are the cellular targets for oxidation, leading to changes in cellular structure and function Recent evidence suggests ROS are also important as second messengers in the regulation of intracellular signaling pathways and, ultimately, gene expression This review explores the production of ROS and the propagation and consequences of oxidative stress in diabetes

Journal ArticleDOI
16 Sep 2005-Science
TL;DR: It is demonstrated that biologically relevant doses of ultraviolet A (UVA) generate ROS in cultured cells with 6- TG–substituted DNA and that 6-TG and UVA are synergistically mutagenic.
Abstract: Oxidative stress and mutagenic DNA lesions formed by reactive oxygen species (ROS) are linked to human malignancy. Clinical treatments inducing chronic oxidative stress may therefore carry a risk of therapy-related cancer. We suggest that immunosuppression by azathioprine (Aza) may be one such treatment. Aza causes the accumulation of 6-thioguanine (6-TG) in patients' DNA. Here we demonstrate that biologically relevant doses of ultraviolet A (UVA) generate ROS in cultured cells with 6-TG–substituted DNA and that 6-TG and UVA are synergistically mutagenic. A replication-blocking DNA 6-TG photoproduct, guanine sulfonate, was bypassed by error-prone, Y-family DNA polymerases in vitro. A preliminary analysis revealed that in five of five cases, Aza treatment was associated with a selective UVA photosensitivity. These findings may partly explain the prevalence of skin cancer in long-term survivors of organ transplantation.

Journal ArticleDOI
TL;DR: Recent investigations on mitochondrial metabolism indicate that melatonin as well as AMK are capable of supporting the electron flux through the respiratory chain, of preventing the breakdown of the mitochondrial membrane potential, and of decreasing electron leakage, thereby reducing the formation of superoxide anions.
Abstract: Melatonin has been shown to protect against oxidative stress in various, highly divergent experimental systems. There are many reasons for its remarkable protective potential. Signaling effects comprise the upregulation of antioxidant enzymes, such as superoxide dismutases, peroxidases, and enzymes of glutathione supply, down-regulation of prooxidant enzymes, such as nitric oxide synthases and lipoxygenases, and presumably also the control of quinone reductase 2. Other mechanisms are based on direct interactions with several reactive oxygen and nitrogen species. Among these reactions, the capacity of easily undergoing single-electron transfer reactions is of particular importance. Electron donation by melatonin is not only an aspect of direct radical scavenging, but additionally represents the basis for formation of the protective metabolites AFMK (N1-ace-tyl-N2-formyl-5-methoxykynuramine) and AMK (N1-acetyl-5-methoxykynuramine). Recent investigations on mitochondrial metabolism indicate that melatonin as well as AMK are capable of supporting the electron flux through the respiratory chain, of preventing the breakdown of the mitochondrial membrane potential, and of decreasing electron leakage, thereby reducing the formation of superoxide anions. Radical avoidance is a new line of investigation, which exceeds mitochondrial actions and also comprises antiexcitatory effects and contributions to the maintenance of internal circadian phase relationships.

Journal ArticleDOI
TL;DR: The alterations in the abundance of mitochondria and mtDNA copy number of mammalian cells in response to oxidative stress and the signaling pathways that are involved are reviewed.