scispace - formally typeset
Search or ask a question

Showing papers on "Oxidative stress published in 2018"


Journal ArticleDOI
TL;DR: Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions.
Abstract: Reactive oxygen and nitrogen species (RONS) are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer), including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions. The purpose of this paper is to provide a review of literature on this complex topic of ever increasing interest.

2,101 citations


Journal ArticleDOI
TL;DR: This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage, along with the implication of metal ions in AD.
Abstract: Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer's disease (AD), an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ) in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ). The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …). This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level.

1,262 citations


Journal ArticleDOI
TL;DR: This review will focus on the main mechanisms involved in the onset of endothelial dysfunction, with particular focus on inflammation and aberrant ROS production and on their relationship with classical and non-classical cardiovascular risk factors, such as hypertension, metabolic disorders, and aging.

707 citations


Journal ArticleDOI
TL;DR: This review will emphasize the therapeutical targets for controlling the signaling pathways, when aimed at the downregulation of ROS generation, oxidative stress, and, consequently, cellular death—with all of these conditions being a problem in diabetes.
Abstract: Chronic or intermittent hyperglycemia is associated with the development of diabetic complications. Several signaling pathways can be altered by having hyperglycemia in different tissues, producing oxidative stress, the formation of advanced glycation end products (AGEs), as well as the secretion of the pro-inflammatory cytokines and cellular death (pathological autophagy and/or apoptosis). However, the signaling pathways that are directly triggered by hyperglycemia appear to have a pivotal role in diabetic complications due to the production of reactive oxygen species (ROS), oxidative stress, and cellular death. The present review will discuss the role of cellular death in diabetic complications, and it will suggest the cause and the consequences between the hyperglycemia-induced signaling pathways and cell death. The signaling pathways discussed in this review are to be described step-by-step, together with their respective inhibitors. They involve diacylglycerol, the activation of protein kinase C (PKC) and NADPH-oxidase system, and the consequent production of ROS. This was initially entitled the “dangerous metabolic route in diabetes”. The historical usages and the recent advancement of new drugs in controlling possible therapeutical targets have been highlighted, in order to evaluate the evolution of knowledge in this sensitive area. It has recently been shown that the metabolic responses to stimuli (i.e., hyperglycemia) involve an integrated network of signaling pathways, in order to define the exact responses. Certain new drugs have been experimentally tested—or suggested and proposed—for their ability to modulate the possible biochemical therapeutical targets for the downregulation of retinopathy, nephropathy, neuropathy, heart disease, angiogenesis, oxidative stress, and cellular death. The aim of this study was to critically and didactically evaluate the exact steps of these signaling pathways and hence mark the indicated sites for the actions of such drugs and their possible consequences. This review will emphasize, besides others, the therapeutical targets for controlling the signaling pathways, when aimed at the downregulation of ROS generation, oxidative stress, and, consequently, cellular death—with all of these conditions being a problem in diabetes.

678 citations


Journal ArticleDOI
TL;DR: A better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Abstract: Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.

637 citations


Journal ArticleDOI
TL;DR: 13 reasons why the brain is susceptible to oxidative stress are rationalised and key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation.
Abstract: The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.

626 citations


Book ChapterDOI
01 Jan 2018
TL;DR: This chapter provides contemporary data concerning pathophysiology of oxidative stress and its relation to atherogenesis.
Abstract: Oxidative stress occurs due to the combination of excess reactive oxygen species and insufficient antioxidant capacity. Oxidative stress has been correlated with endothelial dysfunction, the pathogenesis of atherosclerosis as well as with high incidence of cardiovascular disease. A variety of antioxidants have been studied, during the past few years, for the prevention and treatment of atherosclerosis. This chapter provides contemporary data concerning pathophysiology of oxidative stress and its relation to atherogenesis.

492 citations


Journal ArticleDOI
TL;DR: Redox mechanisms involved in ischemic preconditioning, one of the most effective ways of protecting the heart against IR injury, are reviewed, and several of these protective pathways converge on the inhibition of mPTP opening during reperfusion.

460 citations


Journal ArticleDOI
TL;DR: The potential roles of ROS and nutritional antioxidants in the pathogenesis of several redox imbalance-related diseases and the attenuation of oxidative stress-induced damages are highlighted.
Abstract: The overproduction of reactive oxygen species (ROS) has been implicated in the development of various chronic and degenerative diseases such as cancer, respiratory, neurodegenerative, and digestive diseases. Under physiological conditions, the concentrations of ROS are subtlety regulated by antioxidants, which can be either generated endogenously or externally supplemented. A combination of antioxidant-deficiency and malnutrition may render individuals more vulnerable to oxidative stress, thereby increasing the risk of cancer occurrence. In addition, antioxidant defense can be overwhelmed during sustained inflammation such as in chronic obstructive pulmonary diseases, inflammatory bowel disease, and neurodegenerative disorders, cardiovascular diseases, and aging. Certain antioxidant vitamins, such as vitamin D, are essential in regulating biochemical pathways that lead to the proper functioning of the organs. Antioxidant supplementation has been shown to attenuate endogenous antioxidant depletion thus alleviating associated oxidative damage in some clinical research. However, some results indicate that antioxidants exert no favorable effects on disease control. Thus, more studies are warranted to investigate the complicated interactions between ROS and different types of antioxidants for restoration of the redox balance under pathologic conditions. This review highlights the potential roles of ROS and nutritional antioxidants in the pathogenesis of several redox imbalance-related diseases and the attenuation of oxidative stress-induced damages.

450 citations


Journal ArticleDOI
TL;DR: The involvement of mitochondrial ROS in the mechanism of neuronal loss of major neurodegenerative disorders is summarised.

444 citations


Journal ArticleDOI
TL;DR: The involvement of mitochondrial processes in development of chronic liver diseases, such as nonalcoholic fatty, alcohol-associated, and drug-associated Liver diseases, as well as hepatitis B and C, are reviewed and how they might be targeted therapeutically is discussed.

Journal ArticleDOI
TL;DR: Multiple studies investigating the role of dietary phytochemicals such as, curcumin, epigallocatechin gallate, resveratrol, phenethyl isothiocyanate, sulforaphane, hesperidin, quercetin and 2'-hydroxyflavanone in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment are reviewed.

Journal ArticleDOI
TL;DR: It is suggested that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions.
Abstract: The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.

Journal ArticleDOI
TL;DR: Targeting the dysregulated interplay between excitation–contraction coupling and mitochondrial energetics may ameliorate the progression of heart failure.
Abstract: In heart failure, alterations of Na + and Ca 2+ handling, energetic deficit, and oxidative stress in cardiac myocytes are important pathophysiological hallmarks. Mitochondria are central to these processes because they are the main source for ATP, but also reactive oxygen species (ROS), and their function is critically controlled by Ca 2+ . During physiological variations of workload, mitochondrial Ca 2+ uptake is required to match energy supply to demand but also to keep the antioxidative capacity in a reduced state to prevent excessive emission of ROS. Mitochondria take up Ca 2+ via the mitochondrial Ca 2+ uniporter, which exists in a multiprotein complex whose molecular components were identified only recently. In heart failure, deterioration of cytosolic Ca 2+ and Na + handling hampers mitochondrial Ca 2+ uptake and the ensuing Krebs cycle–induced regeneration of the reduced forms of NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate), giving rise to energetic deficit and oxidative stress. ROS emission from mitochondria can trigger further ROS release from neighboring mitochondria termed ROS-induced ROS release, and cross talk between different ROS sources provides a spatially confined cellular network of redox signaling. Although low levels of ROS may serve physiological roles, higher levels interfere with excitation–contraction coupling, induce maladaptive cardiac remodeling through redox-sensitive kinases, and cell death through mitochondrial permeability transition. Targeting the dysregulated interplay between excitation–contraction coupling and mitochondrial energetics may ameliorate the progression of heart failure.

Journal ArticleDOI
TL;DR: The latest findings on the intricate relationship between mitochondrial dynamics and ROS production are reviewed, focusing mainly on its role in malignant disease.
Abstract: Mitochondria are organelles with a highly dynamic ultrastructure maintained by a delicate equilibrium between its fission and fusion rates. Understanding the factors influencing this balance is important as perturbations to mitochondrial dynamics can result in pathological states. As a terminal site of nutrient oxidation for the cell, mitochondrial powerhouses harness energy in the form of ATP in a process driven by the electron transport chain. Contemporaneously, electrons translocated within the electron transport chain undergo spontaneous side reactions with oxygen, giving rise to superoxide and a variety of other downstream reactive oxygen species (ROS). Mitochondrially-derived ROS can mediate redox signaling or, in excess, cause cell injury and even cell death. Recent evidence suggests that mitochondrial ultrastructure is tightly coupled to ROS generation depending on the physiological status of the cell. Yet, the mechanism by which changes in mitochondrial shape modulate mitochondrial function and redox homeostasis is less clear. Aberrant mitochondrial morphology may lead to enhanced ROS formation, which, in turn, may deteriorate mitochondrial health and further exacerbate oxidative stress in a self-perpetuating vicious cycle. Here, we review the latest findings on the intricate relationship between mitochondrial dynamics and ROS production, focusing mainly on its role in malignant disease.

Journal ArticleDOI
TL;DR: The biochemical properties of catechins, their antioxidant activity, and the mechanisms of action involved in the prevention of oxidative stress-caused diseases are reviewed.
Abstract: Catechins are polyphenolic compounds—flavanols of the flavonoid family found in a variety of plants. Green tea, wine and cocoa-based products are the main dietary sources of these flavanols. Catechins have potent antioxidant properties, although in some cases they may act in the cell as pro-oxidants. Catechins are reactive oxygen species (ROS) scavengers and metal ion chelators, whereas their indirect antioxidant activities comprise induction of antioxidant enzymes, inhibition of pro-oxidant enzymes, and production of the phase II detoxification enzymes and antioxidant enzymes. Oxidative stress and ROS are implicated in aging and related dysfunctions, such as neurodegenerative disease, cancer, cardiovascular diseases, and diabetes. Due to their antioxidant properties, catechins may be beneficial in preventing and protecting against diseases caused by oxidative stress. This article reviews the biochemical properties of catechins, their antioxidant activity, and the mechanisms of action involved in the prevention of oxidative stress-caused diseases.

Journal ArticleDOI
TL;DR: A general view about mitochondrial dysfunction in obesity is presented, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS.

Journal ArticleDOI
TL;DR: There is strong evidence that UCP2 and UCP3, the UCP1 homologues expressed in the heart, protect against mitochondrial oxidative damage by reducing the production of ROS.

Journal ArticleDOI
TL;DR: Findings from this 2-year CR trial in healthy, non-obese humans provide new evidence of persistent metabolic slowing accompanied by reduced oxidative stress, which supports the rate of living and oxidative damage theories of mammalian aging.

Journal ArticleDOI
TL;DR: It is demonstrated that OLT1177, an orally active β-sulfonyl nitrile molecule, inhibits activation of the NLRP3 inflammasome, with unique properties to reverse the metabolic costs of inflammation and to treat IL-1β– and IL-18–mediated diseases.
Abstract: Activation of the NLRP3 inflammasome induces maturation of IL-1β and IL-18, both validated targets for treating acute and chronic inflammatory diseases. Here, we demonstrate that OLT1177, an orally active β-sulfonyl nitrile molecule, inhibits activation of the NLRP3 inflammasome. In vitro, nanomolar concentrations of OLT1177 reduced IL-1β and IL-18 release following canonical and noncanonical NLRP3 inflammasome activation. The molecule showed no effect on the NLRC4 and AIM2 inflammasomes, suggesting specificity for NLRP3. In LPS-stimulated human blood-derived macrophages, OLT1177 decreased IL-1β levels by 60% and IL-18 by 70% at concentrations 100-fold lower in vitro than plasma concentrations safely reached in humans. OLT1177 also reduced IL-1β release and caspase-1 activity in freshly obtained human blood neutrophils. In monocytes isolated from patients with cryopyrin-associated periodic syndrome (CAPS), OLT1177 inhibited LPS-induced IL-1β release by 84% and 36%. Immunoprecipitation and FRET analysis demonstrated that OLT1177 prevented NLRP3-ASC, as well as NLRP3-caspase-1 interaction, thus inhibiting NLRP3 inflammasome oligomerization. In a cell-free assay, OLT1177 reduced ATPase activity of recombinant NLRP3, suggesting direct targeting of NLRP3. Mechanistically, OLT1177 did not affect potassium efflux, gene expression, or synthesis of the IL-1β precursor. Steady-state levels of phosphorylated NF-κB and IkB kinase were significantly lowered in spleen cells from OLT1177-treated mice. We observed reduced IL-1β content in tissue homogenates, limited oxidative stress, and increased muscle oxidative metabolism in OLT1177-treated mice challenged with LPS. Healthy humans receiving 1,000 mg of OLT1177 daily for 8 d exhibited neither adverse effects nor biochemical or hematological changes.

Journal ArticleDOI
TL;DR: Among available antioxidant strategies, treatments using mitochondrial-targeted antioxidants are of particular interest and have the potential to mitigate mitochondrial dysfunction and aberrant inflammatory response through activation of nucleotide-binding oligomerization domain (NOD)-like family receptors.
Abstract: Wound healing is a well-tuned biological process, which is achieved via consecutive and overlapping phases including hemostasis, inflammatory-related events, cell proliferation and tissue remodeling Several factors can impair wound healing such as oxygenation defects, aging, and stress as well as deleterious health conditions such as infection, diabetes, alcohol overuse, smoking and impaired nutritional status Growing evidence suggests that reactive oxygen species (ROS) are crucial regulators of several phases of healing processes ROS are centrally involved in all wound healing processes as low concentrations of ROS generation are required for the fight against invading microorganisms and cell survival signaling Excessive production of ROS or impaired ROS detoxification causes oxidative damage, which is the main cause of non-healing chronic wounds In this context, experimental and clinical studies have revealed that antioxidant and anti-inflammatory strategies have proven beneficial in the non-healing state Among available antioxidant strategies, treatments using mitochondrial-targeted antioxidants are of particular interest Specifically, mitochondrial-targeted peptides such as elamipretide have the potential to mitigate mitochondrial dysfunction and aberrant inflammatory response through activation of nucleotide-binding oligomerization domain (NOD)-like family receptors, such as the pyrin domain containing 3 (NLRP3) inflammasome, nuclear factor-kappa B (NF-κB) signaling pathway inhibition, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)

Journal ArticleDOI
TL;DR: In numerous studies, zinc supplementation has been found to improve blood pressure, glucose, and LDL cholesterol serum level, and deeper knowledge of zinc’s properties may help in treating metabolic syndrome, thus protecting against stroke and angina pectoris, and ultimately against death.
Abstract: A number of studies have reported that zinc plays a substantial role in the development of metabolic syndrome, taking part in the regulation of cytokine expression, suppressing inflammation, and is also required to activate antioxidant enzymes that scavenge reactive oxygen species, reducing oxidative stress. Zinc also plays a role in the correct functioning of lipid and glucose metabolism, regulating and forming the expression of insulin. In numerous studies, zinc supplementation has been found to improve blood pressure, glucose, and LDL cholesterol serum level. Deeper knowledge of zinc’s properties may help in treating metabolic syndrome, thus protecting against stroke and angina pectoris, and ultimately against death.

Journal ArticleDOI
TL;DR: This review summarizes the current knowledge on the contribution of metals to the development of oxidative stress in fish and indicates that quantitative analysis of mRNA expression of metallothionein genes can be appropriate in cases with elevated levels of metals and no evidence of oxidative damage in fish tissue.
Abstract: This review summarizes the current knowledge on the contribution of metals to the development of oxidative stress in fish. Metals are important inducers of oxidative stress in aquatic organisms, promoting formation of reactive oxygen species through two mechanisms. Redox active metals generate reactive oxygen species through redox cycling, while metals without redox potential impair antioxidant defences, especially that of thiol-containing antioxidants and enzymes. Elevated levels of reactive oxygen species lead to oxidative damage including lipid peroxi - dation, protein and DNA oxidation, and enzyme inactivation. Antioxidant defences include the enzyme system and low molecular weight antioxidants. Metal-binding proteins, such as ferritin, ceruloplasmin and metallothioneins, have special functions in the detoxification of toxic metals and also play a role in the metabolism and homeostasis of essential metals. Recent studies of metallothioneins as biomarkers indicate that quantitative analysis of mRNA expression of metallothionein genes can be appropriate in cases with elevated levels of metals and no evidence of oxidative damage in fish tissue. Components of the antioxidant defence are used as biochemical markers of oxidative stress. These markers may be manifested differently in the field than in results found in laboratory studies. A complex approach should be taken in field studies of metal contamination of the aquatic environment.

Journal ArticleDOI
TL;DR: The role of Mn in the prevention and development of metabolic diseases is discussed in this paper, where it is shown that deficiency in dietary Mn as well as excessive Mn exposure could increase reactive oxygen species (ROS) generation and result in further oxidative stress.
Abstract: Manganese (Mn) is an essential element that is involved in the synthesis and activation of many enzymes and in the regulation of the metabolism of glucose and lipids in humans. In addition, Mn is one of the required components for Mn superoxide dismutase (MnSOD) that is mainly responsible for scavenging reactive oxygen species (ROS) in mitochondrial oxidative stress. Both Mn deficiency and intoxication are associated with adverse metabolic and neuropsychiatric effects. Over the past few decades, the prevalence of metabolic diseases, including type 2 diabetes mellitus (T2MD), obesity, insulin resistance, atherosclerosis, hyperlipidemia, nonalcoholic fatty liver disease (NAFLD), and hepatic steatosis, has increased dramatically. Previous studies have found that ROS generation, oxidative stress, and inflammation are critical for the pathogenesis of metabolic diseases. In addition, deficiency in dietary Mn as well as excessive Mn exposure could increase ROS generation and result in further oxidative stress. However, the relationship between Mn and metabolic diseases is not clear. In this review, we provide insights into the role Mn plays in the prevention and development of metabolic diseases.

Journal ArticleDOI
TL;DR: Understanding the complex interplay between hypoxia-induced signaling pathways, oxidative stress and mitochondrial function will provide better insight into the underlying mechanisms of disease pathogenesis.

Journal Article
TL;DR: A review of the therapeutic effects of superoxide dismutases in various physiological and pathological conditions such as cancer, inflammatory diseases, cystic fibrosis, ischemia, aging, rheumatoid arthritis, neurodegenerative diseases, and diabetes is presented in this article.
Abstract: Superoxide dismutases (SODs) constitute a very important antioxidant defense against oxidative stress in the body. The enzyme acts as a good therapeutic agent against reactive oxygen species-mediated diseases. The present review describes the therapeutic effects of SOD in various physiological and pathological conditions such as cancer, inflammatory diseases, cystic fibrosis, ischemia, aging, rheumatoid arthritis, neurodegenerative diseases, and diabetes. However, the enzyme has certain limitations in clinical applications. Therefore, SOD conjugates and mimetics have been developed to increase its therapeutic efficiency. Here, an overview is provided of some in vivo therapeutic effects observed with SOD.

Journal ArticleDOI
TL;DR: This review summarizes the relationships between oxidative stress and different liver pathogenesis induced by drugs and xenobiotics, focusing upon different chronic liver injury induced by alcohol, antitubercular drugs and hyperactivity of antiretroviral drugs in HIV patients, viral hepatitis infection induced oxidative stress.

Journal ArticleDOI
TL;DR: Increased level of glyceraldehyde-3-P activates two major pro-oxidative pathways in diabetes, which causes the accumulation of glycolytic metabolites upstream, and this leads to excessive stimulation of other pro-oxygenative pathways such as hexosamine and polyol pathways.

Journal ArticleDOI
TL;DR: It is suggested that consumption and supplementation of natural-derived anti-oxidant neuroprotective agent such as anthocyanins may be beneficial and suggest new dietary-supplement strategies for intervention in and prevention of progressive neurodegenerative diseases, such as AD.
Abstract: Well-established studies have shown an elevated level of reactive oxygen species (ROS) that induces oxidative stress in the Alzheimer's disease (AD) patient's brain and an animal model of AD. Herein, we investigated the underlying anti-oxidant neuroprotective mechanism of natural dietary supplementation of anthocyanins extracted from Korean black beans in the amyloid precursor protein/presenilin-1 (APP/PS1) mouse model of AD. Both in vivo (APP/PS1 mice) and in vitro (mouse hippocampal HT22 cells) results demonstrated that anthocyanins regulate the phosphorylated-phosphatidylinositol 3-kinase-Akt-glycogen synthase kinase 3 beta (p-PI3K/Akt/GSK3β) pathways and consequently attenuate amyloid beta oligomer (AβO)-induced elevations in ROS level and oxidative stress via stimulating the master endogenous anti-oxidant system of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (Nrf2/HO-1) pathways and prevent apoptosis and neurodegeneration by suppressing the apoptotic and neurodegenerative markers such as activation of caspase-3 and PARP-1 expression as well as the TUNEL and Fluoro-Jade B-positive neuronal cells in the APP/PS1 mice. In vitro ApoTox-Glo™ Triplex assay results also showed that anthocyanins act as a potent anti-oxidant neuroprotective agent and reduce AβO-induced neurotoxicity in the HT22 cells via PI3K/Akt/Nrf2 signaling. Importantly, anthocyanins improve memory-related pre- and postsynaptic protein markers and memory functions in the APP/PS1 mice. In conclusion, our data suggested that consumption and supplementation of natural-derived anti-oxidant neuroprotective agent such as anthocyanins may be beneficial and suggest new dietary-supplement strategies for intervention in and prevention of progressive neurodegenerative diseases, such as AD.

Journal ArticleDOI
TL;DR: The findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction.
Abstract: Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60–79 years) with impaired endothelial function (brachial artery flow–mediated dilation P P P P 7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo ( P P >0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023.