scispace - formally typeset
Search or ask a question

Showing papers on "Oxidative stress published in 2020"


Journal ArticleDOI
TL;DR: This work focuses on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as ‘oxidative eustress’.
Abstract: 'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).

1,809 citations


Journal ArticleDOI
TL;DR: During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism.

852 citations


Journal ArticleDOI
TL;DR: The diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases are discussed.
Abstract: Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.

619 citations


Journal ArticleDOI
TL;DR: This review summarizes the mechanisms that may account for the excessive production of ROS, the potential mechanistic roles of ROS that drive NAFLD progression, and therapeutic interventions that are related to oxidative stress.

429 citations


Journal ArticleDOI
TL;DR: It is suggested that free radical scavengers could be beneficial for the most vulnerable patients with COVID-19, because of how the excessive release of reactive oxygen species by neutrophils may perpetuate red blood cell dysfunction, thrombosis and tissue damage in severe cases of COIDs.
Abstract: The high neutrophil to lymphocyte ratio observed in critically ill patients with COVID-19 is associated with excessive levels of reactive oxygen species (ROS), which promote a cascade of biological events that drive pathological host responses. ROS induce tissue damage, thrombosis and red blood cell dysfunction, which contribute to COVID-19 disease severity. We suggest that free radical scavengers could be beneficial for the most vulnerable patients. In this Comment article, Becker and colleagues consider how the excessive release of reactive oxygen species by neutrophils may perpetuate red blood cell dysfunction, thrombosis and tissue damage in severe cases of COVID-19.

378 citations


Journal ArticleDOI
TL;DR: It is suggested that future studies should focus on targeted manipulation of NOX in the microglia to understand the molecular mechanisms driving inflammatory-related NOX activation and recent evidence that therapeutic target identification should be unbiased and founded on relevant pathophysiological assays to facilitate the discovery of translatable antioxidant and anti-inflammatory therapeutics.
Abstract: Neurodegenerative disorders, such as Alzheimer's disease, are a global public health burden with poorly understood aetiology. Neuroinflammation and oxidative stress (OS) are undoubtedly hallmarks of neurodegeneration, contributing to disease progression. Protein aggregation and neuronal damage result in the activation of disease-associated microglia (DAM) via damage-associated molecular patterns (DAMPs). DAM facilitate persistent inflammation and reactive oxygen species (ROS) generation. However, the molecular mechanisms linking DAM activation and OS have not been well-defined; thus targeting these cells for clinical benefit has not been possible. In microglia, ROS are generated primarily by NADPH oxidase 2 (NOX2) and activation of NOX2 in DAM is associated with DAMP signalling, inflammation and amyloid plaque deposition, especially in the cerebrovasculature. Additionally, ROS originating from both NOX and the mitochondria may act as second messengers to propagate immune activation; thus intracellular ROS signalling may underlie excessive inflammation and OS. Targeting key kinases in the inflammatory response could cease inflammation and promote tissue repair. Expression of antioxidant proteins in microglia, such as NADPH dehydrogenase 1 (NQO1), is promoted by transcription factor Nrf2, which functions to control inflammation and limit OS. Lipid droplet accumulating microglia (LDAM) may also represent a double-edged sword in neurodegenerative disease by sequestering peroxidised lipids in non-pathological ageing but becoming dysregulated and pro-inflammatory in disease. We suggest that future studies should focus on targeted manipulation of NOX in the microglia to understand the molecular mechanisms driving inflammatory-related NOX activation. Finally, we discuss recent evidence that therapeutic target identification should be unbiased and founded on relevant pathophysiological assays to facilitate the discovery of translatable antioxidant and anti-inflammatory therapeutics.

342 citations


Journal ArticleDOI
TL;DR: An overview of oxidative phosphorylation and its inter-relationship with ROS production by the electron transport chain is provided and traditional and novel translational methodology for assessing mitochondrial energetics in health and disease are outlined.
Abstract: The mitochondrial electron transport chain utilizes a series of electron transfer reactions to generate cellular ATP through oxidative phosphorylation. A consequence of electron transfer is the generation of reactive oxygen species (ROS), which contributes to both homeostatic signaling as well as oxidative stress during pathology. In this graphical review we provide an overview of oxidative phosphorylation and its inter-relationship with ROS production by the electron transport chain. We also outline traditional and novel translational methodology for assessing mitochondrial energetics in health and disease.

328 citations


Journal ArticleDOI
TL;DR: The synthesis of ultrasmall copper-based nanozymes as reactive oxygen species scavengers are reported on and improved treatment outcomes in acute liver and kidney injury and wound healing in vivo are demonstrated.
Abstract: Oxidative stress is associated with many acute and chronic inflammatory diseases, yet limited treatment is currently available clinically. The development of enzyme-mimicking nanomaterials (nanozymes) with good reactive oxygen species (ROS) scavenging ability and biocompatibility is a promising way for the treatment of ROS-related inflammation. Herein we report a simple and efficient one-step development of ultrasmall Cu5.4O nanoparticles (Cu5.4O USNPs) with multiple enzyme-mimicking and broad-spectrum ROS scavenging ability for the treatment of ROS-related diseases. Cu5.4O USNPs simultaneously possessing catalase-, superoxide dismutase-, and glutathione peroxidase-mimicking enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low dosage and significantly improve treatment outcomes in acute kidney injury, acute liver injury and wound healing. Meanwhile, the ultrasmall size of Cu5.4O USNPs enables rapid renal clearance of the nanomaterial, guaranteeing the biocompatibility. The protective effect and good biocompatibility of Cu5.4O USNPs will facilitate clinical treatment of ROS-related diseases and enable the development of next-generation nanozymes.

300 citations


Journal ArticleDOI
TL;DR: In conclusion, PGC-1α acts as an essential node connecting metabolic regulation, redox control, and inflammatory pathways, and it is an interesting therapeutic target that may have significant benefits for a number of metabolic diseases.
Abstract: Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is a transcriptional coactivator described as a master regulator of mitochondrial biogenesis and function, including oxidative phosphorylation and reactive oxygen species detoxification. PGC-1α is highly expressed in tissues with high energy demands, and it is clearly associated with the pathogenesis of metabolic syndrome and its principal complications including obesity, type 2 diabetes mellitus, cardiovascular disease, and hepatic steatosis. We herein review the molecular pathways regulated by PGC-1α, which connect oxidative stress and mitochondrial metabolism with inflammatory response and metabolic syndrome. PGC-1α regulates the expression of mitochondrial antioxidant genes, including manganese superoxide dismutase, catalase, peroxiredoxin 3 and 5, uncoupling protein 2, thioredoxin 2, and thioredoxin reductase and thus prevents oxidative injury and mitochondrial dysfunction. Dysregulation of PGC-1α alters redox homeostasis in cells and exacerbates inflammatory response, which is commonly accompanied by metabolic disturbances. During inflammation, low levels of PGC-1α downregulate mitochondrial antioxidant gene expression, induce oxidative stress, and promote nuclear factor kappa B activation. In metabolic syndrome, which is characterized by a chronic low grade of inflammation, PGC-1α dysregulation modifies the metabolic properties of tissues by altering mitochondrial function and promoting reactive oxygen species accumulation. In conclusion, PGC-1α acts as an essential node connecting metabolic regulation, redox control, and inflammatory pathways, and it is an interesting therapeutic target that may have significant benefits for a number of metabolic diseases.

265 citations


Journal ArticleDOI
TL;DR: It is proposed that oxidized vitamin E metabolites may be used to accurately monitor individual functional antioxidant level, which might serve as promising key solutions for future elucidating the impact of oxidative stress on ageing and age-related diseases.

264 citations


Journal ArticleDOI
TL;DR: The abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy and are summarized.
Abstract: Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease.

Journal ArticleDOI
TL;DR: This systematic elucidate the morphological characteristics and metabolic regulation of mitochondria in the regulation of ferroptosis and identifies key regulators of mitochondrial lipid metabolism and iron homeostasis that make a difference to ferroptic sensitivity.

Journal ArticleDOI
02 Jan 2020-Nature
TL;DR: It is shown that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter, as metastasizing cells depend on M CT1 to manage oxidative stress.
Abstract: Metastasis requires cancer cells to undergo metabolic changes that are poorly understood1–3. Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1high and MCT1−/low cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1high cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress. Differences in MCT1 function among melanoma cells confer differences in oxidative stress resistance and metastatic potential.

Journal ArticleDOI
TL;DR: This review presents the molecular mechanisms by which the oxidative milieu contributes to the pathophysiology of insulin resistance and diabetes mellitus through several molecular mechanisms.
Abstract: Type 2 diabetes mellitus (T2DM) is the most prevalent metabolic disorder characterized by chronic hyperglycemia and an inadequate response to circulatory insulin by peripheral tissues resulting in insulin resistance. Insulin resistance has a complex pathophysiology, and it is contributed to by multiple factors including oxidative stress. Oxidative stress refers to an imbalance between free radical production and the antioxidant system leading to a reduction of peripheral insulin sensitivity and contributing to the development of T2DM via several molecular mechanisms. In this review, we present the molecular mechanisms by which the oxidative milieu contributes to the pathophysiology of insulin resistance and diabetes mellitus.

Journal ArticleDOI
TL;DR: The modulation of oxidative stress response might represent a potential approach to eradicate cancer in combination with FDA-approved chemotherapies, radiotherapie as well as immunotherapIES.
Abstract: Redox homeostasis is an essential requirement of the biological systems for performing various normal cellular functions including cellular growth, differentiation, senescence, survival and aging in humans. The changes in the basal levels of reactive oxygen species (ROS) are detrimental to cells and often lead to several disease conditions including cardiovascular, neurological, diabetes and cancer. During the last two decades, substantial research has been done which clearly suggests that ROS are essential for the initiation, progression, angiogenesis as well as metastasis of cancer in several ways. During the last two decades, the potential of dysregulated ROS to enhance tumor formation through the activation of various oncogenic signaling pathways, DNA mutations, immune escape, tumor microenvironment, metastasis, angiogenesis and extension of telomere has been discovered. At present, surgery followed by chemotherapy and/or radiotherapy is the major therapeutic modality for treating patients with either early or advanced stages of cancer. However, the majority of patients relapse or did not respond to initial treatment. One of the reasons for recurrence/relapse is the altered levels of ROS in tumor cells as well as in cancer-initiating stem cells. One of the critical issues is targeting the intracellular/extracellular ROS for significant antitumor response and relapse-free survival. Indeed, a large number of FDA-approved anticancer drugs are efficient to eliminate cancer cells and drug resistance by increasing ROS production. Thus, the modulation of oxidative stress response might represent a potential approach to eradicate cancer in combination with FDA-approved chemotherapies, radiotherapies as well as immunotherapies.

Journal ArticleDOI
TL;DR: In-depth knowledge of the molecular mechanisms of ROS actuation and their influence under steady-state and stressful conditions will pave the way for the development of novel therapeutic interventions to mitigate the harmful outcomes of ROS in the onset and progression of a variety of chronic inflammatory and age-related diseases.
Abstract: Since the Great Oxidation Event, about 2.4 billion years ago, the Earth is immersed in an oxidizing atmosphere. Thus, it has been proposed that excess oxygen, originally a waste product of photosynthetic cyanobacteria, induced oxidative stress and the production of reactive oxygen species (ROS), which have since acted as fundamental drivers of biologic evolution and eukaryogenesis. Indeed, throughout an organism's lifespan, ROS affect directly (as mutagens) or indirectly (as messengers and regulators) all structural and functional components of cells, and many aspects of cell biology. Whether left unchecked by protective antioxidant systems, excess ROS not only cause genomic mutations but also induce irreversible oxidative modification of proteins (protein oxidation and peroxidation), lipids and glycans (advanced lipoxidation and glycation end products), impairing their function and promoting disease or cell death. Conversely, low-level local ROS play an important role both as redox-signaling molecules in a wide spectrum of pathways involved in the maintenance of cellular homeostasis (MAPK/ERK, PTK/PTP, PI3K-AKT-mTOR), and regulating key transcription factors (NFκB/IκB, Nrf2/KEAP1, AP-1, p53, HIF-1). Consequently, ROS can shape a variety of cellular functions, including proliferation, differentiation, migration and apoptosis. In this review, we will give a brief overview of the relevance of ROS in both physiological and pathological processes, particularly inflammation and aging. In-depth knowledge of the molecular mechanisms of ROS actuation and their influence under steady-state and stressful conditions will pave the way for the development of novel therapeutic interventions. This will mitigate the harmful outcomes of ROS in the onset and progression of a variety of chronic inflammatory and age-related diseases.

Journal ArticleDOI
TL;DR: Mechanistically, it was identified that FNDC5/Irisin activated AKT/mTOR signaling and decreased DOX-induced cardiomyocyte apoptosis, and moreover, direct evidence was provided that the anti-oxidant effect of F NDC5 / irisin was mediated by the AKT /GSK3β/FYN/Nrf2 axis in an mTOR-independent manner.
Abstract: Oxidative stress and cardiomyocyte apoptosis play critical roles in doxorubicin (DOX)-induced cardiotoxicity. Previous studies indicated that fibronectin type III domain-containing 5 (FNDC5) and its cleaved form, irisin, could preserve mitochondrial function and attenuate oxidative damage as well as cell apoptosis, however, its role in DOX-induced cardiotoxicity remains unknown. Our present study aimed to investigate the role and underlying mechanism of FNDC5 on oxidative stress and cardiomyocyte apoptosis in DOX-induced cardiotoxicity. Cardiomyocyte-specific FNDC5 overexpression was achieved using an adeno-associated virus system, and then the mice were exposed to a single intraperitoneal injection of DOX (15 mg/kg) to generate DOX-induced cardiotoxicity. Herein, we found that FNDC5 expression was downregulated in DOX-treated murine hearts and cardiomyocytes. Fndc5 deficiency resulted in increased oxidative damage and apoptosis in H9C2 cells under basal conditions, imitating the phenotype of DOX-induced cardiomyopathy in vitro, conversely, FNDC5 overexpression or irisin treatment alleviated DOX-induced oxidative stress and cardiomyocyte apoptosis in vivo and in vitro. Mechanistically, we identified that FNDC5/Irisin activated AKT/mTOR signaling and decreased DOX-induced cardiomyocyte apoptosis, and moreover, we provided direct evidence that the anti-oxidant effect of FNDC5/Irisin was mediated by the AKT/GSK3β/FYN/Nrf2 axis in an mTOR-independent manner. And we also demonstrated that heat shock protein 20 was responsible for the activation of AKT caused by FNDC5/Irisin. In line with the data in acute model, we also found that FNDC5/Irisin exerted beneficial effects in chronic model of DOX-induced cardiotoxicity (5 mg/kg, i.p., once a week for three times, the total cumulative dose is 15 mg/kg) in mice. Based on these findings, we supposed that FNDC5/Irisin was a potential therapeutic agent against DOX-induced cardiotoxicity.

Journal ArticleDOI
TL;DR: Various cellular and systemic incidents caused by SARS-CoV-2 that may critically impact intra and extracellular mitochondrial function, and contribute to the progression and severity of the disease are discussed.

Journal ArticleDOI
TL;DR: Based on the available evidence, it appears unlikely that rigorous and prolonged exercise results in an oxidative stress level that is detrimental to human health.

Journal ArticleDOI
TL;DR: The findings suggest that micro-PS induces reproductive toxicity in mice through oxidative stress and activation of the p38 MAPK signaling pathways.

Journal ArticleDOI
TL;DR: Physiological ROS production, roles of genetic and epigenetic factors on the OS and male infertility with various mechanisms such as lipid peroxidation, DNA damage, and disorder of male hormone profile, inflammation, and varicocele are described.
Abstract: Infertility is a global health problem involving about 15% of couples. Approximately half of the infertility cases are related to male factors. The oxidative stress, which refers to an imbalance in levels of reactive oxygen species (ROS) and antioxidants, is one of the main causes of infertility in men. A small amount of ROS is necessary for the physiological function of sperm including the capacitation, hyperactivation and acrosomal reaction. However, high levels of ROS can cause infertility through not only by lipid peroxidation or DNA damage but inactivation of enzymes and oxidation of proteins in spermatozoa. Oxidative stress (OS) is mainly caused by factors associated with lifestyle. Besides, immature spermatozoa, inflammatory factors, genetic mutations and altering levels of sex hormones are other main source of ROS. Since OS occurs due to the lack of antioxidants and its side effects in semen, lifestyle changes and antioxidant regimens can be helpful therapeutic approaches to overcome this problem. The present study aimed to describe physiological ROS production, roles of genetic and epigenetic factors on the OS and male infertility with various mechanisms such as lipid peroxidation, DNA damage, and disorder of male hormone profile, inflammation, and varicocele. Finally, the roles of oral antioxidants and herbs were explained in coping with OS in male infertility.

Journal ArticleDOI
17 Feb 2020
TL;DR: Mice transiently depleted of SOD2 or overexpressing skeletal muscle-specific UCP1 exhibit Nrf2-mediated antioxidant gene expression and PGC1α-mediated mitochondrial biogenesis, and these reports aid us in understanding the roles of NRF2 in pathophysiological alterations involving mtROS.
Abstract: Reactive oxygen species (ROS) are byproducts of aerobic respiration and signaling molecules that control various cellular functions. Nrf2 governs the gene expression of endogenous antioxidant synthesis and ROS-eliminating enzymes in response to various electrophilic compounds that inactivate the negative regulator Keap1. Accumulating evidence has shown that mitochondrial ROS (mtROS) activate Nrf2, often mediated by certain protein kinases, and induce the expression of antioxidant genes and genes involved in mitochondrial quality/quantity control. Mild physiological stress, such as caloric restriction and exercise, elicits beneficial effects through a process known as “mitohormesis”. Exercise induces NOX4 expression in the heart, which activates Nrf2 and increases endurance capacity. Mice transiently depleted of SOD2 or overexpressing skeletal muscle-specific UCP1 exhibit Nrf2-mediated antioxidant gene expression and PGC1α-mediated mitochondrial biogenesis. ATF4 activation may induce a transcriptional program that enhances NADPH synthesis in the mitochondria and might cooperate with the Nrf2 antioxidant system. In response to severe oxidative stress, Nrf2 induces Klf9 expression, which represses mtROS-eliminating enzymes to enhance cell death. Nrf2 is inactivated in certain pathological conditions, such as diabetes, but Keap1 down-regulation or mtROS elimination rescues Nrf2 expression and improves the pathology. These reports aid us in understanding the roles of Nrf2 in pathophysiological alterations involving mtROS.

Journal ArticleDOI
TL;DR: The possible influence of antioxidants and redox proteins, such as NADPH and glutathione and protein disulfide isomerase, on the binding of viral protein with the host cell angiotensin-converting enzyme II receptor protein as well as on the severity of COVID-19 infection was discussed.
Abstract: Novel coronavirus disease 2019 (COVID-19) has resulted in a global pandemic and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies have suggested that a precise disulfide-thiol balance is crucial for viral entry and fusion into the host cell and that oxidative stress generated from free radicals can affect this balance. Here, we reviewed the current knowledge about the role of oxidative stress on SARS-CoV and SARS-CoV-2 infections. We focused on the impact of antioxidants, like NADPH and glutathione, and redox proteins, such as thioredoxin and protein disulfide isomerase, that maintain the disulfide-thiol balance in the cell. The possible influence of these biomolecules on the binding of viral protein with the host cell angiotensin-converting enzyme II receptor protein as well as on the severity of COVID-19 infection was discussed.

Journal ArticleDOI
TL;DR: Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS, which could provide important new insights into the treatment of diabetes.
Abstract: Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction-oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and nonselectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.

Journal ArticleDOI
TL;DR: Targeting changes in reactive oxygen species and proinflammatory signaling with suitable antioxidants could be an effective strategy to treat major depressive disorder.

Journal ArticleDOI
11 Jun 2020-Cell
TL;DR: It is shown, using flies and mice, that sleep deprivation leads to accumulation of reactive oxygen species (ROS) and consequent oxidative stress, specifically in the gut, and that survival without sleep is possible when ROS accumulation is prevented.

Journal ArticleDOI
TL;DR: Treating oxidative stress by antioxidants or enhancing endogenous antioxidants should be an effective strategy to treat the underlying pathogenetic mechanisms of COPD.
Abstract: Oxidative stress is a major driving mechanism in the pathogenesis of COPD. There is increased oxidative stress in the lungs of COPD patients due to exogenous oxidants in cigarette smoke and air pollution and due to endogenous generation of reactive oxygen species by inflammatory and structural cells in the lung. Mitochondrial oxidative stress may be particularly important in COPD. There is also a reduction in antioxidant defences, with inactivation of several antioxidant enzymes and the transcription factors Nrf2 and FOXO that regulate multiple antioxidant genes. Increased systemic oxidative stress may exacerbate comorbidities and contribute to skeletal muscle weakness. Oxidative stress amplifies chronic inflammation, stimulates fibrosis and emphysema, causes corticosteroid resistance, accelerates lung aging, causes DNA damage and stimulates formation of autoantibodies. This suggests that treating oxidative stress by antioxidants or enhancing endogenous antioxidants should be an effective strategy to treat the underlying pathogenetic mechanisms of COPD. Most clinical studies in COPD have been conducted using glutathione-generating antioxidants such as N-acetylcysteine, carbocysteine and erdosteine, which reduce exacerbations in COPD patients, but it is not certain whether this is due to their antioxidant or mucolytic properties. Dietary antioxidants have so far not shown to be clinically effective in COPD. There is a search for more effective antioxidants, which include superoxide dismutase mimetics, NADPH oxidase inhibitors, mitochondria-targeted antioxidants and Nrf2 activators.

Journal ArticleDOI
TL;DR: An updated overview of the role of OS in brain IRI is provided, providing some bases for therapeutic interventions based on counteracting the OS-related mechanism of injury and thus suggesting novel possible strategies in the prevention of IRI after stroke.
Abstract: Stroke is the second leading cause of mortality and the major cause of adult physical disability worldwide. The currently available treatment to recanalize the blood flow in acute ischemic stroke is intravenous administration of tissue plasminogen activator (t-PA) and endovascular treatment. Nevertheless, those treatments have the disadvantage that reperfusion leads to a highly harmful reactive oxygen species (ROS) production, generating oxidative stress (OS), which is responsible for most of the ischemia-reperfusion injury and thus causing brain tissue damage. In addition, OS can lead brain cells to apoptosis, autophagy and necrosis. The aims of this review are to provide an updated overview of the role of OS in brain IRI, providing some bases for therapeutic interventions based on counteracting the OS-related mechanism of injury and thus suggesting novel possible strategies in the prevention of IRI after stroke.

Journal ArticleDOI
TL;DR: The physiological role of low ROS production in the heart and the vessels is detailed, and the implication of oxidative stress in cardiovascular diseases is investigated, including NAPDH oxidase or during endothelial or mitochondrial dysfunction.
Abstract: Reactive oxygen species (ROS) are subcellular messengers in signal transductions pathways with both beneficial and deleterious roles. ROS are generated as a by-product of mitochondrial respiration or metabolism or by specific enzymes such as superoxide dismutases, glutathione peroxidase, catalase, peroxiredoxins, and myeloperoxidases. Under physiological conditions, the low levels of ROS production are equivalent to their detoxification, playing a major role in cellular signaling and function. In pathological situations, particularly atherosclerosis or hypertension, the release of ROS exceeds endogenous antioxidant capacity, leading to cell death. At cardiovascular levels, oxidative stress is highly implicated in myocardial infarction, ischemia/reperfusion, or heart failure. Here, we will first detail the physiological role of low ROS production in the heart and the vessels. Indeed, ROS are able to regulate multiple cardiovascular functions, such as cell proliferation, migration, and death. Second, we will investigate the implication of oxidative stress in cardiovascular diseases. Then, we will focus on ROS produced by NAPDH oxidase or during endothelial or mitochondrial dysfunction. Given the importance of oxidative stress at the cardiovascular level, antioxidant therapies could be a real benefit. In the last part of this review, we will detail the new therapeutic strategies potentially involved in cardiovascular protection and currently under study.

Journal ArticleDOI
TL;DR: It is suggested that upregulation of reactive oxygen species might play one of the most important roles in the establishment and progression of periodontitis (as well as in other diseases of inflammation) through the development of oxidative stress.
Abstract: Periodontitis is a highly prevalent disease. As it progresses, it causes serious morbidity in the form of periodontal abscesses and tooth loss and, in the latter stages, pain. It is also now known that periodontitis is strongly associated with several nonoral diseases. Thus, patients with periodontitis are at greater risk for the development and/or exacerbation of diabetes, chronic obstructive pulmonary disease, and cardiovascular diseases, among other conditions. Although it is without question that specific groups of oral bacteria which populate dental plaque play a causative role in the development of periodontitis, it is now thought that once this disease has been triggered, other factors play an equal, and possibly more important, role in its progression, particularly in severe cases or in cases that prove difficult to treat. In this regard, we allude to the host response, specifically the notion that the host, once infected with oral periodontal pathogenic bacteria, will mount a defense response mediated largely through the innate immune system. The most abundant cell type of the innate immune system - polymorphonuclear neutrophils - can, when protecting the host from microbial invasion, mount a response that includes upregulation of proinflammatory cytokines, matrix metalloproteinases, and reactive oxygen species, all of which then contribute to the tissue damage and loss of teeth commonly associated with periodontitis. Of the mechanisms referred to here, we suggest that upregulation of reactive oxygen species might play one of the most important roles in the establishment and progression of periodontitis (as well as in other diseases of inflammation) through the development of oxidative stress. In this overview, we discuss both innate and epigenetic factors (eg, diabetes, smoking) that lead to the development of oxidative stress. This oxidative stress then provides an environment conducive to the destructive processes observed in periodontitis. Therefore, we shall describe some of the fundamental characteristics of oxidative stress and its effects on the periodontium, discuss the diseases and other factors that cause oxidative stress, and, finally, review potentially novel therapeutic approaches for the management (and possibly even the reversal) of periodontitis, which rely on the use of therapies, such as resveratrol and other antioxidants, that provide increased antioxidant activity in the host.