scispace - formally typeset
Search or ask a question
Topic

Oxidative stress

About: Oxidative stress is a research topic. Over the lifetime, 86513 publications have been published within this topic receiving 3845790 citations. The topic is also known as: oxydative stress.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes the recent progress of the research on AsA-GSH pathway in terms of oxidative stress tolerance in plants and focuses on the defense mechanisms as well as molecular interactions.
Abstract: Reactive oxygen species (ROS) generation is a usual phenomenon in a plant both under a normal and stressed condition. However, under unfavorable or adverse conditions, ROS production exceeds the capacity of the antioxidant defense system. Both non-enzymatic and enzymatic components of the antioxidant defense system either detoxify or scavenge ROS and mitigate their deleterious effects. The Ascorbate-Glutathione (AsA-GSH) pathway, also known as Asada–Halliwell pathway comprises of AsA, GSH, and four enzymes viz. ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, play a vital role in detoxifying ROS. Apart from ROS detoxification, they also interact with other defense systems in plants and protect the plants from various abiotic stress-induced damages. Several plant studies revealed that the upregulation or overexpression of AsA-GSH pathway enzymes and the enhancement of the AsA and GSH levels conferred plants better tolerance to abiotic stresses by reducing the ROS. In this review, we summarize the recent progress of the research on AsA-GSH pathway in terms of oxidative stress tolerance in plants. We also focus on the defense mechanisms as well as molecular interactions.

486 citations

Journal ArticleDOI
TL;DR: The use of mass spectrometric methods to identify the site and extent of protein carbonylation on a proteome-wide scale has expanded the view of how oxidative stress can regulate cellular processes.

486 citations

Journal ArticleDOI
TL;DR: A rheostat role for HIF-2α is proposed that allows for the maintenance of ROS as well as mitochondrial homeostasis and avoids multiple-organ pathology, biochemical abnormalities and altered gene expression patterns in mice lacking this family member.
Abstract: Hypoxia-inducible factor (HIF) transcription factors respond to multiple environmental stressors, including hypoxia and hypoglycemia. We report that mice lacking the HIF family member HIF-2alpha (encoded by Epas1) have a syndrome of multiple-organ pathology, biochemical abnormalities and altered gene expression patterns. Histological and ultrastructural analyses showed retinopathy, hepatic steatosis, cardiac hypertrophy, skeletal myopathy, hypocellular bone marrow, azoospermia and mitochondrial abnormalities in these mice. Serum and urine metabolite studies showed hypoglycemia, lactic acidosis, altered Krebs cycle function and dysregulated fatty acid oxidation. Biochemical assays showed enhanced generation of reactive oxygen species (ROS), whereas molecular analyses indicated reduced expression of genes encoding the primary antioxidant enzymes (AOEs). Transfection analyses showed that HIF-2alpha could efficiently transactivate the promoters of the primary AOEs. Prenatal or postnatal treatment of Epas1-/- mice with a superoxide dismutase (SOD) mimetic reversed several aspects of the null phenotype. We propose a rheostat role for HIF-2alpha that allows for the maintenance of ROS as well as mitochondrial homeostasis.

485 citations

Journal ArticleDOI
TL;DR: How the biogenesis and remodelling of mitochondria that are elicited by PGC1&agr; contribute to an increase in oxidative metabolism and the preservation of ROS homeostasis is discussed and the importance in ageing and neurodegenerative disorders is examined.
Abstract: PGC1α is a transcriptional coactivator that is a central inducer of mitochondrial biogenesis in cells. Recent work highlighted that PGC1α can also modulate the composition and functions of individual mitochondria. Therefore, it is emerging that PGC1α is controlling global oxidative metabolism by performing two types of remodelling: (1) cellular remodelling through mitochondrial biogenesis, and (2) organelle remodelling through alteration in the intrinsic properties of mitochondria. The elevated oxidative metabolism associated with increased PGC1α activity could be accompanied by an increase in reactive oxygen species (ROS) that are primarily generated by mitochondria. However, increasing evidence suggests that this is not the case, as PGC1α is also a powerful regulator of ROS removal by increasing the expression of numerous ROS-detoxifying enzymes. Therefore, PGC1α, by controlling both the induction of mitochondrial metabolism and the removal of its ROS by-products, would elevate oxidative metabolism and minimize the impact of ROS on cell physiology. In this Commentary, we discuss how the biogenesis and remodelling of mitochondria that are elicited by PGC1α contribute to an increase in oxidative metabolism and the preservation of ROS homeostasis. Finally, we examine the importance of these findings in ageing and neurodegenerative disorders, conditions that are associated with impaired mitochondrial functions and ROS balance.

485 citations

Journal ArticleDOI
01 Aug 1996-Shock
TL;DR: Pharmacological evidence suggests that the peroxynitrite-poly-ADP ribosyl synthetase pathway importantly contributes to the cellular injury in endotoxic shock, inflammatory pancreatic islet cell destruction, and central nervous system ischemia.
Abstract: Peroxynitrite is a reactive oxidant produced from nitric oxide (NO) and superoxide, which reacts with proteins, lipids, and DNA under conditions of inflammation and shock. Here we overview the role of peroxynitrite in circulatory shock and inflammation. Immunohistochemical and biochemical evidence demonstrate production of peroxynitrite in endotoxic and hemorrhagic shock, chronic bowel inflammation, and in various forms of ischemia-reperfusion injury. The reactivity and decomposition of peroxynitrite is determined by the chemical environment, and the ratio of superoxide versus NO. Peroxynitrite can initiate toxic oxidative reactions in vitro and in vivo. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of peroxynitrite. In addition, peroxynitrite is a potent trigger of DNA strand breakage, with subsequent activation of the nuclear enzyme poly-ADP ribosyl synthetase, with eventual severe energy depletion of the cells. Pharmacological evidence suggests that the peroxynitrite-poly-ADP ribosyl synthetase pathway importantly contributes to the cellular injury in endotoxic shock, inflammatory pancreatic islet cell destruction, and central nervous system ischemia. The proposal that peroxynitrite is a major cytotoxic mediator would change the interpretation of previous data on the effects of NO donors, NO synthase inhibitors, and superoxide neutralizing strategies in shock and inflammation.

485 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Inflammation
76.4K papers, 4M citations
89% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Signal transduction
122.6K papers, 8.2M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20238,839
202217,614
20216,457
20206,203
20195,669