scispace - formally typeset
Search or ask a question
Topic

Oxidative stress

About: Oxidative stress is a research topic. Over the lifetime, 86513 publications have been published within this topic receiving 3845790 citations. The topic is also known as: oxydative stress.


Papers
More filters
Journal ArticleDOI
21 May 2009-Nature
TL;DR: It is demonstrated that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicates that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.
Abstract: Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1(-/-) phenotype. Here we demonstrate that cells derived from Bmi1(-/-) mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1(-/-) mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.

449 citations

Journal ArticleDOI
TL;DR: The striking beneficial effects of DR and 2‐DG in models of PD, when considered in light of recent epidemiological data, suggest that DR may prove beneficial in reducing the incidence of PD in humans.
Abstract: Parkinson's disease (PD) is an age-related disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN) and corresponding motor deficits. Oxidative stress and mitochondrial dysfunction are implicated in the neurodegenerative process in PD. Although dietary restriction (DR) extends lifespan and reduces levels of cellular oxidative stress in several different organ systems, the impact of DR on age-related neurodegenerative disorders is unknown. We report that DR in adult mice results in resistance of dopaminergic neurons in the SN to the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-induced loss of dopaminergic neurons and deficits in motor function were ameliorated in DR rats. To mimic the beneficial effect of DR on dopaminergic neurons, we administered 2-deoxy-D-glucose (2-DG; a nonmetabolizable analogue of glucose) to mice fed ad libitum. Mice receiving 2-DG exhibited reduced damage to dopaminergic neurons in the SN and improved behavioral outcome following MPTP treatment. The 2-DG treatment suppressed oxidative stress, preserved mitochondrial function, and attenuated cell death in cultured dopaminergic cells exposed to the complex I inhibitor rotenone or Fe2+. 2-DG and DR induced expression of the stress proteins heat-shock protein 70 and glucose-regulated protein 78 in dopaminergic cells, suggesting involvement of these cytoprotective proteins in the neuroprotective actions of 2-DG and DR. The striking beneficial effects of DR and 2-DG in models of PD, when considered in light of recent epidemiological data, suggest that DR may prove beneficial in reducing the incidence of PD in humans.

449 citations

Journal ArticleDOI
01 May 2002-Alcohol
TL;DR: How the shift in the balance of cytokine-induced defensive and damage responses in hepatocytes contributes to the liver injury that occurs in alcoholic hepatitis remains poorly characterized and should be a rewarding area for future studies.

449 citations

Journal ArticleDOI
01 Nov 2011-Diabetes
TL;DR: Experimental evidence is provided indicating that dietary compounds targeting Nrf2 activation can be used therapeutically to improve metabolic disorder and relieve renal damage induced by diabetes.
Abstract: OBJECTIVE To determine whether dietary compounds targeting NFE2-related factor 2 (Nrf2) activation can be used to attenuate renal damage and preserve renal function during the course of streptozotocin (STZ)-induced diabetic nephropathy. RESEARCH DESIGN AND METHODS Diabetes was induced in Nrf2 +/+ and Nrf2 −/− mice by STZ injection. Sulforaphane (SF) or cinnamic aldehyde (CA) was administered 2 weeks after STZ injection and metabolic indices and renal structure and function were assessed (18 weeks). Markers of diabetes including blood glucose, insulin, polydipsia, polyuria, and weight loss were measured. Pathological alterations and oxidative damage in glomeruli were also determined. Changes in protein expression of the Nrf2 pathway, as well as transforming growth factor-β1 (TGF-β1), fibronectin (FN), collagen IV, and p21/WAF1Cip1 (p21) were analyzed. The molecular mechanisms of Nrf2-mediated protection were investigated in an in vitro model using human renal mesangial cells (HRMCs). RESULTS SF or CA significantly attenuated common metabolic disorder symptoms associated with diabetes in Nrf2 +/+ but not in Nrf2 −/− mice, indicating SF and CA function through specific activation of the Nrf2 pathway. Furthermore, SF or CA improved renal performance and minimized pathological alterations in the glomerulus of STZ-Nrf2 +/+ mice. Nrf2 activation reduced oxidative damage and suppressed the expression of TGF-β1, extracellular matrix proteins and p21 both in vivo and in HRMCs. In addition, Nrf2 activation reverted p21-mediated growth inhibition and hypertrophy of HRMCs under hyperglycemic conditions. CONCLUSIONS We provide experimental evidence indicating that dietary compounds targeting Nrf2 activation can be used therapeutically to improve metabolic disorder and relieve renal damage induced by diabetes.

449 citations

Journal ArticleDOI
TL;DR: These results provide a mechanistic insight into how H2S signaling mediates cellular senescence induced by oxidative stress and protects against cellular aging via S-sulfhydration of Keap1 and Nrf2 activation in association with oxidative stress.
Abstract: Aims: H2S, a third member of gasotransmitter family along with nitric oxide and carbon monoxide, exerts a wide range of cellular and molecular actions in our body. Cystathionine gamma-lyase (CSE) is a major H2S-generating enzyme in our body. Aging at the cellular level, known as cellular senescence, can result from increases in oxidative stress. The aim of this study was to investigate how H2S attenuates oxidative stress and delays cellular senescence. Results: Here we showed that mouse embryonic fibroblasts isolated from CSE knockout mice (CSE KO-MEFs) display increased oxidative stress and accelerated cellular senescence in comparison with MEFs from wild-type mice (WT-MEFs). The protein expression of p53 and p21 was significantly increased in KO-MEFs, and knockdown of p53 or p21 reversed CSE deficiency-induced senescence. Incubation of the cells with NaHS (a H2S donor) significantly increased the glutathione (GSH) level and rescued KO-MEFs from senescence. Nrf2 is a master regulator of the anti...

448 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Inflammation
76.4K papers, 4M citations
89% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Signal transduction
122.6K papers, 8.2M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20238,839
202217,614
20216,457
20206,203
20195,669