scispace - formally typeset
Search or ask a question
Topic

Oxidative stress

About: Oxidative stress is a research topic. Over the lifetime, 86513 publications have been published within this topic receiving 3845790 citations. The topic is also known as: oxydative stress.


Papers
More filters
Journal ArticleDOI
TL;DR: Several studies suggest that dietary supplementation with antioxidants can influence the response to chemotherapy as well as the development of adverse side effects that results from treatment with antineoplastic agents.
Abstract: Several studies suggest that dietary supplementation with antioxidants can influence the response to chemotherapy as well as the development of adverse side effects that results from treatment with antineoplastic agents. Administration of antineoplastic agents results in oxidative stress, i.e., the production of free radicals and other reactive oxygen species (ROS). Oxidative stress reduces the rate of cell proliferation, and that occurring during chemotherapy may interfere with the cytotoxic effects of antineoplastic drugs, which depend on rapid proliferation of cancer cells for optimal activity. Antioxidants detoxify ROS and may enhance the anticancer effects of chemotherapy. For some supplements, activities beyond their antioxidant properties, such as inhibition of topoisomerase II or protein tyrosine kinases, may also contribute. ROS cause or contribute to certain side effects that are common to many anticancer drugs, such as gastrointestinal toxicity and mutagenesis. ROS also contribute to side effects that occur only with individual agents, such as doxorubicin-induced cardiotoxicity, cisplatin-induced nephrotoxicity, and bleomycin-induced pulmonary fibrosis. Antioxidants can reduce or prevent many of these side effects, and for some supplements the protective effect results from activities other than their antioxidant properties. Certain side effects, however, such as alopecia and myelosuppression, are not prevented by antioxidants, and agents that interfere with these side effects may also interfere with the anticancer effects of chemotherapy.

444 citations

Journal ArticleDOI
TL;DR: This review presents evidence, gathered over the last decade, concerning a variety of pathogenic proteins, their important signaling pathways and pathogenic mechanisms associated with oxidative stress in Parkinson's disease and Alzheimer's disease, and emphasizes antioxidative options.

444 citations

Journal ArticleDOI
TL;DR: The involvement of mitochondrial ROS in the mechanism of neuronal loss of major neurodegenerative disorders is summarised.

444 citations

Journal ArticleDOI
TL;DR: The concept of reactive oxygen species (ROS) was re-evaluated in recent years and the term "oxidative signalling" was created as discussed by the authors, which is a collective term that includes both oxygen radicals, like superoxide (O 2 ) and hydroxyl (·OH) radicals, and other non-radicals such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2 or (1) Δg), etc.
Abstract: The production of reactive oxygen species (ROS) is the unavoidable consequence of aerobic life. ROS is a collective term that includes both oxygen radicals, like superoxide (O 2. -) and hydroxyl (·OH) radicals, and other non-radicals such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2 or (1)Δg), etc. In plants, ROS are produced in different cell compartments and are oxidizing species, particularly hydroxyl radicals and singlet oxygen, that can produce serious damage in biological systems (oxidative stress). However, plant cells also have an array of antioxidants which, normally, can scavenge the excess oxidants produced and so avoid deleterious effects on the plant cell bio-molecules. The concept of 'oxidative stress' was re-evaluated in recent years and the term 'oxidative signalling' was created. This means that ROS production, apart from being a potentially harmful process, is also an important component of the signalling network that plants use for their development and for responding to environmental challenges. It is known that ROS play an important role regulating numerous biological processes such as growth, development, response to biotic and environmental stresses, and programmed cell death. The term reactive nitrogen species (RNS) includes radicals like nitric oxide (NO· ) and nitric dioxide (NO2.), as well as non-radicals such as nitrous acid (HNO2) and dinitrogen tetroxide (N2O4), among others. RNS are also produced in plants although the generating systems have still not been fully characterized. Nitric oxide (NO·) has an important function as a key signalling molecule in plant growth, development, and senescence, and RNS, like ROS, also play an important role as signalling molecules in the response to environmental (abiotic) stress. Similarly, NO· is a key mediator, in co-operation with ROS, in the defence response to pathogen attacks in plants. ROS and RNS have been demonstrated to have an increasingly important role in biology and medicine.

443 citations

Journal ArticleDOI
TL;DR: The data suggest that in control brains, a low density of glutathione peroxidase-positive cells surround the dopaminergic neurons the most vulnerable to Parkinson's disease, and that in parkinsonian brains, the increased number ofglutathioneperoxidases protein-containing cells may contribute to protect neurons against pathological death.

443 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Inflammation
76.4K papers, 4M citations
89% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Signal transduction
122.6K papers, 8.2M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20238,839
202217,614
20216,457
20206,203
20195,669