scispace - formally typeset
Search or ask a question
Topic

Oxidative stress

About: Oxidative stress is a research topic. Over the lifetime, 86513 publications have been published within this topic receiving 3845790 citations. The topic is also known as: oxydative stress.


Papers
More filters
Journal ArticleDOI
TL;DR: This role of soluble sugars in oxidative stress regulation seems to entail differential effects of glucose and sucrose, which emphasizes the unresolved issue of characterizing sucrose-specific signalling pathways.
Abstract: Soluble sugars, especially sucrose, glucose, and fructose, play an obviously central role in plant structure and metabolism at the cellular and whole-organism levels. They are involved in the responses to a number of stresses, and they act as nutrient and metabolite signalling molecules that activate specific or hormone-crosstalk transduction pathways, thus resulting in important modifications of gene expression and proteomic patterns. Various metabolic reactions and regulations directly link soluble sugars with the production rates of reactive oxygen species, such as mitochondrial respiration or photosynthesis regulation, and, conversely, with anti-oxidative processes, such as the oxidative pentose-phosphate pathway and carotenoid biosynthesis. Moreover, stress situations where soluble sugars are involved, such as chilling, herbicide injury, or pathogen attack, are related to important changes in reactive oxygen species balance. These converging or antagonistic relationships between soluble sugars, reactive oxygen species production, and anti-oxidant processes are generally confirmed by current transcriptome analyses, and suggest that sugar signalling and sugar-modulated gene expression are related to the control of oxidative stress. All these links place soluble carbohydrates in a pivotal role in the pro-oxidant and antioxidant balance, and must have constrained the selection of adaptive mechanisms involving soluble sugars and preventing de-regulation of reactive oxygen species production. Finally, in line with the specific role of sucrose in oxygenic photosynthetic organisms, this role of soluble sugars in oxidative stress regulation seems to entail differential effects of glucose and sucrose, which emphasizes the unresolved issue of characterizing sucrose-specific signalling pathways.

889 citations

Journal ArticleDOI
TL;DR: The evidence is summarized that substantiates the notion that the repeated apnoea-related hypoxic events in OSA, similarly to hypoxia/reperfusion injury, initiate oxidative stress, affecting energy metabolism, redox-sensitive gene expression, and expression of adhesion molecules.

887 citations

Journal ArticleDOI
TL;DR: The manipulation of enzymatic and nonenzymatic antioxidants in plants to enhance the environmental stress tolerance and also throws light on ROS and redox signaling, calcium signaling, and ABA signaling.
Abstract: Reactive oxygen species (ROS) are produced in plants as byproducts during many metabolic reactions, such as photosynthesis and respiration. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidant defense. Generation of ROS causes rapid cell damage by triggering a chain reaction. Cells have evolved an elaborate system of enzymatic and nonenzymatic antioxidants which help to scavenge these indigenously generated ROS. Various enzymes involved in ROS-scavenging have been manipulated, over expressed or downregulated to add to the present knowledge and understanding the role of the antioxidant systems. The present article reviews the manipulation of enzymatic and nonenzymatic antioxidants in plants to enhance the environmental stress tolerance and also throws light on ROS and redox signaling, calcium signaling, and ABA signaling.

887 citations

Journal ArticleDOI
TL;DR: Oxidative stress is involved in the pathophysiology of HF in the heart as well as in the skeletal muscle, and a better understanding of these mechanisms may enable the development of novel and effective therapeutic strategies against HF.
Abstract: Oxidative stress, defined as an excess production of reactive oxygen species (ROS) relative to antioxidant defense, has been shown to play an important role in the pathophysiology of cardiac remodeling and heart failure (HF). It induces subtle changes in intracellular pathways, redox signaling, at lower levels, but causes cellular dysfunction and damage at higher levels. ROS are derived from several intracellular sources, including mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. The production of ROS is increased within the mitochondria from failing hearts, whereas normal antioxidant enzyme activities are preserved. Chronic increases in ROS production in the mitochondria lead to a catastrophic cycle of mitochondrial DNA (mtDNA) damage as well as functional decline, further ROS generation, and cellular injury. ROS directly impair contractile function by modifying proteins central to excitation-contraction coupling. Moreover, ROS activate a broad variety of hypertrophy signaling kinases and transcription factors and mediate apoptosis. They also stimulate cardiac fibroblast proliferation and activate the matrix metalloproteinases, leading to the extracellular matrix remodeling. These cellular events are involved in the development and progression of maladaptive myocardial remodeling and failure. Oxidative stress is also involved in the skeletal muscle dysfunction, which may be associated with exercise intolerance and insulin resistance in HF. Therefore, oxidative stress is involved in the pathophysiology of HF in the heart as well as in the skeletal muscle. A better understanding of these mechanisms may enable the development of novel and effective therapeutic strategies against HF.

885 citations

Journal ArticleDOI
TL;DR: It is demonstrated that much of the evidence for the involvement of oxidative stress is either specific to a stimulus in a particular cell line or open to reinterpretation, and that other evidence suggests a role for lipid peroxides in pathways where such a role exists.

882 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Inflammation
76.4K papers, 4M citations
89% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Signal transduction
122.6K papers, 8.2M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20238,839
202217,614
20216,457
20206,203
20195,669