scispace - formally typeset
Search or ask a question
Topic

Oxidative stress

About: Oxidative stress is a research topic. Over the lifetime, 86513 publications have been published within this topic receiving 3845790 citations. The topic is also known as: oxydative stress.


Papers
More filters
Journal ArticleDOI
TL;DR: The results of numerous studies show that LPO, and probably oxidative stress in general, may exert both deleterious and beneficial effects in vivo, and it appears difficult to regulate the formation of free radical-mediated LPO products.

867 citations

Journal ArticleDOI
TL;DR: Current experimental evidence indicates that increased oxidative stress and associated oxidative damage are mediators of renovascular injury in cardiovascular pathologies, and the role of oxidative stress in hypertension-associated vascular damage is focused on.
Abstract: Metabolism of oxygen by cells generates potentially deleterious reactive oxygen species (ROS). Under normal conditions the rate and magnitude of oxidant formation is balanced by the rate of oxidant elimination. However, an imbalance between prooxidants and antioxidants results in oxidative stress, which is the pathogenic outcome of oxidant overproduction that overwhelms the cellular antioxidant capacity. The kidney and vasculature are rich sources of NADPH oxidase-derived ROS, which under pathological conditions play an important role in renal dysfunction and vascular damage. Strong experimental evidence indicates that increased oxidative stress and associated oxidative damage are mediators of renovascular injury in cardiovascular pathologies. Increased production of superoxide anion and hydrogen peroxide, reduced nitric oxide synthesis, and decreased bioavailability of antioxidants have been demonstrated in experimental and human hypertension. These findings have evoked considerable interest because of the possibilities that therapies targeted against free radicals by decreasing ROS generation or by increasing nitric oxide availability and antioxidants may be useful in minimizing vascular injury and renal dysfunction and thereby prevent or regress hypertensive end-organ damage. This article highlights current developments in the field of ROS and hypertension, focusing specifically on the role of oxidative stress in hypertension-associated vascular damage. In addition, recent clinical trials investigating cardiovascular benefits of antioxidants are discussed, and some explanations for the rather disappointing results from these studies are addressed. Finally, important avenues for future research in the field of ROS, oxidative stress, and redox signaling in hypertension are considered.

865 citations

Journal ArticleDOI
TL;DR: It is established that oxidatively damaged protein is associated with aging and some diseases and nitration of tyrosine residues may contribute to peroxynitrite toxicity, as nitration precludes the phosphorylation or nucleotidylation of tyosine residues and thereby seriously compromises one of the most important mechanisms of cellular regulation and signal transduction.
Abstract: Highly reactive oxygen species that are formed during normal metabolism and under conditions of oxidative stress are able to oxidize proteins or convert lipid and carbohydrate derivatives to compounds that react with functional groups on proteins. Among other changes, these ROS-mediated reactions lead to the formation of protein carbonyl derivatives, which serves as a marker of ROS-mediated protein damage. On the basis of this marker, it is established that oxidatively damaged protein is associated with aging and some diseases. The accumulation of oxidatively damaged protein reflects the balance among a myriad of factors that govern the rates of ROS generation and the rate at which damaged protein is degraded. Peroxynitrite, which is formed under normal physiological conditions, is able to oxidize methionine residues in proteins and to nitrate tyrosine residues; however, its ability to do so is dependent on the availability of CO2, which stimulates the nitration of tyrosine residues but inhibits the oxidation of methionine residues. Nitration of tyrosine residues may contribute to peroxynitrite toxicity, as nitration precludes the phosphorylation or nucleotidylation of tyrosine residues and thereby seriously compromises one of the most important mechanisms of cellular regulation and signal transduction.

863 citations

Journal ArticleDOI
TL;DR: Recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics is covered.
Abstract: New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1alpha, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.

862 citations

Journal ArticleDOI
TL;DR: Current research on the interplay and sequence of oxidative damage related to impaired brain glucose metabolism and proteostasis defects are summarized and potential pharmacological interventions to retard AD progression are suggested.
Abstract: Alzheimer disease (AD) is a major cause of age-related dementia. We do not fully understand AD aetiology and pathogenesis, but oxidative damage is a key component. The brain mostly uses glucose for energy, but in AD and amnestic mild cognitive impairment glucose metabolism is dramatically decreased, probably owing, at least in part, to oxidative damage to enzymes involved in glycolysis, the tricarboxylic acid cycle and ATP biosynthesis. Consequently, ATP-requiring processes for cognitive function are impaired, and synaptic dysfunction and neuronal death result, with ensuing thinning of key brain areas. We summarize current research on the interplay and sequence of these processes and suggest potential pharmacological interventions to retard AD progression.

859 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Inflammation
76.4K papers, 4M citations
89% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Signal transduction
122.6K papers, 8.2M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20238,839
202217,614
20216,457
20206,203
20195,669