scispace - formally typeset
Search or ask a question
Topic

Oxidative stress

About: Oxidative stress is a research topic. Over the lifetime, 86513 publications have been published within this topic receiving 3845790 citations. The topic is also known as: oxydative stress.


Papers
More filters
Journal ArticleDOI
TL;DR: Results support the free radical theory of aging by suggesting that the increased resistance to oxidative stress may be among the causes of increased longevity in both strain TJ401 and in the dauer larva.
Abstract: The dauer larva state and the age-1 mutation, both of which extend life-span in Caenorhabditis elegans, were tested for hyperresistance to cellular damage that may be relevant to aging. The age-1 strain TJ401 displayed hyperresistance to oxidative stress relative to its parental strain. The activities of two enzymes that protect cells from oxidative damage, superoxide dismutase (SOD) and catalase, showed an age-dependent increase in mutant animals, which was not seen in the parental strain. These increases in activities paralleled the time course of the hyperresistance. The results are consistent with the age-1 gene product functioning as a negative regulator of SOD and catalase activities. In wild-type and age-1 dauer larvae, elevated levels of SOD activity, but not of catalase activity, were present when compared with young adults. The common increase in SOD activity prompted cloning the C. elegans Cu/Zn SOD gene. Its position on the physical map of the genome was in the region to which the age-1 gene has been genetically mapped, but it is unlikely that a mutation at the SOD locus confers the Age phenotype. Results support the free radical theory of aging by suggesting that the increased resistance to oxidative stress may be among the causes of increased longevity in both strain TJ401 and in the dauer larva.

722 citations

Journal ArticleDOI
TL;DR: Evidence for the roles of mitochondrial dysfunction and increased oxidative stress in the neuronal loss that leads to PD is examined and how this knowledge might further improve patient management and aid in the development of 'mitochondrial therapy' for PD is discussed.
Abstract: Parkinson disease (PD) is associated with progressive loss of dopaminergic neurons in the substantia nigra, as well as with more-widespread neuronal changes that cause complex and variable motor and nonmotor symptoms. Recent rapid advances in PD genetics have revealed a prominent role for mitochondrial dysfunction in the pathogenesis of the disease, and the products of several PD-associated genes, including SNCA, Parkin, PINK1, DJ-1, LRRK2 and HTR2A, show a degree of localization to the mitochondria under certain conditions. Impaired mitochondrial function is likely to increase oxidative stress and might render cells more vulnerable to this and other related processes, including excitotoxicity. The mitochondria, therefore, represent a highly promising target for the development of disease biomarkers by use of genetic, biochemical and bioimaging approaches. Novel therapeutic interventions that modify mitochondrial function are currently under development, and a large phase III clinical trial is underway to examine whether high-dose oral coenzyme Q10 will slow disease progression. In this Review, we examine evidence for the roles of mitochondrial dysfunction and increased oxidative stress in the neuronal loss that leads to PD and discuss how this knowledge might further improve patient management and aid in the development of 'mitochondrial therapy' for PD.

722 citations

Journal ArticleDOI
TL;DR: This article looks back to the antioxidant/free radical field in 1994 and discusses how it has progressed in the past 18 years and suggests that increasing endogenous antioxidant levels (e.g., by supplying "pro-oxidants") may be a better approach to therapeutics and disease prevention than consuming large doses of "dietary antioxidants."
Abstract: This article looks back to the antioxidant/free radical field in 1994 and discusses how it has progressed in the past 18 years. In some areas, there has been little change: the role of oxygen radicals and other reactive oxygen species (ROS) in the origin or progression of most human diseases remains uncertain, with cancer and neurodegenerative disease being likely exceptions. Even in diseases in which ROS are involved there has been little progress in developing effective antioxidant treatments. Mega-doses of dietary antioxidants have also generally failed to prevent human disease, in part because they do not decrease oxidative damage in vivo (as revealed by robust biomarkers). However, some strategies that are known to delay disease onset may act, at least in part, by decreasing oxidative damage levels. Nevertheless, far more is known today about endogenous antioxidant defenses and how they are regulated, which has led to a deeper understanding of how some ROS can act as signaling molecules. Increasing endogenous antioxidant levels (e.g., by supplying “pro-oxidants”) may be a better approach to therapeutics and disease prevention than consuming large doses of “dietary antioxidants.”

721 citations

Journal ArticleDOI
TL;DR: Significant evidence is outlined from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers and the strong evidence supporting the notion that the single methionine residue of amyloids beta- peptide is vital to the oxidative Stress and neurotoxicological properties of this peptide.

719 citations

Journal ArticleDOI
TL;DR: Surprisingly, the oxidized nucleoside was associated predominantly with RNA because immunoreaction was diminished greatly by preincubation in RNase but only slightly by DNase, the first evidence of increased RNA oxidation restricted to vulnerable neurons in AD.
Abstract: In this study we used an in situ approach to identify the oxidized nucleosides 8-hydroxydeoxyguanosine (8OHdG) and 8-hydroxyguanosine (8OHG), markers of oxidative damage to DNA and RNA, respectively, in cases of Alzheimer’s disease (AD). The goal was to determine whether nuclear and mitochondrial DNA as well as RNA is damaged in AD. Immunoreactivity with monoclonal antibodies 1F7 or 15A3 recognizing both 8OHdG and 8OHG was prominent in the cytoplasm and to a lesser extent in the nucleolus and nuclear envelope in neurons within the hippocampus, subiculum, and entorhinal cortex as well as frontal, temporal, and occipital neocortex in cases of AD, whereas similar structures were immunolabeled only faintly in controls. Relative density measurement showed that there was a significant increase ( p < 0.0001) in 8OHdG and 8OHG immunoreactivity with 1F7 in cases of AD ( n = 22) as compared with senile ( n = 13), presenile ( n = 10), or young controls ( n = 4). Surprisingly, the oxidized nucleoside was associated predominantly with RNA because immunoreaction was diminished greatly by preincubation in RNase but only slightly by DNase. This is the first evidence of increased RNA oxidation restricted to vulnerable neurons in AD. The subcellular localization of damaged RNA showing cytoplasmic predominance is consistent with the hypothesis that mitochondria may be a major source of reactive oxygen species that cause oxidative damage in AD.

719 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Inflammation
76.4K papers, 4M citations
89% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Signal transduction
122.6K papers, 8.2M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20238,839
202217,614
20216,457
20206,203
20195,669