scispace - formally typeset
Search or ask a question

Showing papers on "Oxide published in 2018"


Journal ArticleDOI
01 Nov 2018-Nature
TL;DR: It is shown that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials, which lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).
Abstract: Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle1–3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)6–10. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.

874 citations


Journal ArticleDOI
TL;DR: This critical Review focuses on the evolution of the hybrid ion capacitor (HIC) from its early embodiments to its modern form, focusing on the key outstanding scientific and technological questions that necessitate further in-depth study.
Abstract: In this critical Review we focus on the evolution of the hybrid ion capacitor (HIC) from its early embodiments to its modern form, focusing on the key outstanding scientific and technological questions that necessitate further in-depth study. It may be argued that HICs began as aqueous systems, based on a Faradaic oxide positive electrode (e.g., Co3O4, RuOx) and an activated carbon ion-adsorption negative electrode. In these early embodiments HICs were meant to compete directly with electrical double layer capacitors (EDLCs), rather than with the much higher energy secondary batteries. The HIC design then evolved to be based on a wide voltage (∼4.2 V) carbonate-based battery electrolyte, using an insertion titanium oxide compound anode (Li4Ti5O12, LixTi5O12) versus a Li ion adsorption porous carbon cathode. The modern Na and Li architectures contain a diverse range of nanostructured materials in both electrodes, including TiO2, Li7Ti5O12, Li4Ti5O12, Na6LiTi5O12, Na2Ti3O7, graphene, hard carbon, soft carbo...

663 citations



Journal ArticleDOI
01 Apr 2018
TL;DR: In this paper, a mild thermal reduction of graphene oxide was used to form hydrogen peroxide from oxygen, achieving state-of-the-art performance at low overpotentials.
Abstract: Electrochemical oxygen reduction has garnered attention as an emerging alternative to the traditional anthraquinone oxidation process to enable the distributed production of hydrogen peroxide. Here, we demonstrate a selective and efficient non-precious electrocatalyst, prepared through an easily scalable mild thermal reduction of graphene oxide, to form hydrogen peroxide from oxygen. During oxygen reduction, certain variants of the mildly reduced graphene oxide electrocatalyst exhibit highly selective and stable peroxide formation activity at low overpotentials (<10 mV) under basic conditions, exceeding the performance of current state-of-the-art alkaline catalysts. Spectroscopic structural characterization and in situ Raman spectroelectrochemistry provide strong evidence that sp2-hybridized carbon near-ring ether defects along sheet edges are the most active sites for peroxide production, providing new insight into the electrocatalytic design of carbon-based materials for effective peroxide production. Electrochemical routes for the production of hydrogen peroxide would reduce the waste inherent in the current anthraquinone process, and also make distributed and on-site production more feasible. Here, inexpensive reduced graphene oxide is proven to be a stable and selective catalyst for oxygen reduction at remarkably low overpotentials.

588 citations


Journal ArticleDOI
TL;DR: The review summarizes the most significant progresses related to room temperature gas sensing by using hierarchical oxide nanostructures, graphene and its derivatives and 2D transition metal dichalcogenides, highlighting the peculiar gas sensing behavior with enhanced selectivity, sensitivity and long-term stability.
Abstract: Room-temperature (RT) gas sensing is desirable for battery-powered or self-powered instrumentation that can monitor emissions associated with pollution and industrial processes. This review (with 171 references) discusses recent advances in three types of porous nanostructures that have shown remarkable potential for RT gas sensing. The first group comprises hierarchical oxide nanostructures (mainly oxides of Sn, Ni, Zn, W, In, La, Fe, Co). The second group comprises graphene and its derivatives (graphene, graphene oxides, reduced graphene oxides, and their composites with metal oxides and noble metals). The third group comprises 2D transition metal dichalcogenides (mainly sulfides of Mo, W, Sn, Ni, also in combination with metal oxides). They all have been found to enable RT sensing of gases such as NOx, NH3, H2, SO2, CO, and of vapors such as of acetone, formaldehyde or methanol. Attractive features also include high selectivity and sensitivity, long-term stability and affordable costs. Strengths and limitations of these materials are highlighted, and prospects with respect to the development of new materials to overcome existing limitations are discussed.

478 citations


Journal ArticleDOI
TL;DR: The hybrid exhibits superior activity towards the hydrogen evolution reaction with low onset potentials of 11 mV (0.5 m H2 SO4 ) and 18mV (1 m KOH) as well as remarkable stability.
Abstract: An in situ catalytic etching strategy is developed to fabricate holey reduced graphene oxide along with simultaneous coupling with a small-sized Mo2 N-Mo2 C heterojunction (Mo2 N-Mo2 C/HGr). The method includes the first immobilization of H3 PMo12 O40 (PMo12 ) clusters on graphite oxide (GO), followed by calcination in air and NH3 to form Mo2 N-Mo2 C/HGr. PMo12 not only acts as the Mo heterojunction source, but also provides the Mo species that can in situ catalyze the decomposition of adjacent reduced GO to form HGr, while the released gas (CO) and introduced NH3 simultaneously react with the Mo species to form an Mo2 N-Mo2 C heterojunction on HGr. The hybrid exhibits superior activity towards the hydrogen evolution reaction with low onset potentials of 11 mV (0.5 m H2 SO4 ) and 18 mV (1 m KOH) as well as remarkable stability. The activity in alkaline media is also superior to Pt/C at large current densities (>88 mA cm-2 ). The good activity of Mo2 N-Mo2 C/HGr is ascribed to its small size, the heterojunction of Mo2 N-Mo2 C, and the good charge/mass-transfer ability of HGr, as supported by a series of experiments and theoretical calculations.

447 citations


Journal ArticleDOI
TL;DR: A scalable, safe and green method to synthesize graphene oxide with a high yield based on water electrolytic oxidation of graphite and a green electrochemical method to fully oxidize the graphite lattice in a few seconds, which is over 100 times faster than existing methods.
Abstract: Graphene oxide is highly desired for printing electronics, catalysis, energy storage, separation membranes, biomedicine, and composites. However, the present synthesis methods depend on the reactions of graphite with mixed strong oxidants, which suffer from explosion risk, serious environmental pollution, and long-reaction time up to hundreds of hours. Here, we report a scalable, safe and green method to synthesize graphene oxide with a high yield based on water electrolytic oxidation of graphite. The graphite lattice is fully oxidized within a few seconds in our electrochemical oxidation reaction, and the graphene oxide obtained is similar to those achieved by the present methods. We also discuss the synthesis mechanism and demonstrate continuous and controlled synthesis of graphene oxide and its use for transparent conductive films, strong papers, and ultra-light elastic aerogels.

430 citations


Journal ArticleDOI
TL;DR: Owing to the structural and compositional benefits, the as-derived Co3 O4 /Co-Fe oxide double-shelled nanoboxes exhibit enhanced electrocatalytic performance for oxygen evolution reaction in alkaline solution.
Abstract: Rational design of complex metal-organic framework (MOF) hybrid precursors offers a great opportunity to construct various functional nanostructures. Here, a novel MOF-hybrid-assisted strategy to synthesize Co3 O4 /Co-Fe oxide double-shelled nanoboxes is reported. In the first step, zeolitic imidazolate framework-67 (ZIF-67, a Co-based MOF)/Co-Fe Prussian blue analogue (PBA) yolk-shell nanocubes are formed via a facile anion-exchange reaction between ZIF-67 nanocube precursors and [Fe(CN)6 ]3- ions at room temperature. Subsequently, an annealing treatment is applied to prepare Co3 O4 /Co-Fe oxide double-shelled nanoboxes. Owing to the structural and compositional benefits, the as-derived Co3 O4 /Co-Fe oxide double-shelled nanoboxes exhibit enhanced electrocatalytic performance for oxygen evolution reaction in alkaline solution.

386 citations


Journal ArticleDOI
01 Jul 2018
TL;DR: A critical analysis of the current state of metal and metal‐oxide nanomaterial research advances the understanding to overcome antibiotic resistance and provide alternatives to combat bacterial infections.
Abstract: With an increase in antibiotic resistance, a growing interest in developing new antimicrobial agents has gained popularity. Metal‐ and metal‐oxide‐based nanoparticles, surface‐to‐volume is able to distinguish bacterial cells from mammalian cells and can provide long‐term antibacterial and biofilm prevention. These nanoparticles elicit bactericidal properties through the generation of reactive oxygen species (ROS) that are able to target physical structures, metabolic pathways, and DNA synthesis of prokaryotic cells leading to cell death. In this progress report, a critical analysis of current literature on antimicrobial effect of metal and metal‐oxide nanoparticles are examined. Specifically, the antimicrobial mechanisms of metal ions and metal nanomaterials are discussed. Antimicrobial efficiency of nanomaterials is correlated with the structural and physical properties, such as size, shape, and/or zeta potential. A critical analysis of the current state of metal and metal‐oxide nanomaterial research advances our understanding to overcome antibiotic resistance and provide alternatives to combat bacterial infections. Finally, emerging approaches to identify and minimize metallic poisoning, specifically for biomedical applications, are examined.

360 citations


Journal ArticleDOI
TL;DR: A 3D catalyst, composed of nanoparticles of CoFe alloy embedded in N-doped carbon nanotubes tangled with reduced graphene oxide, was developed, which presents appreciable ORR/OER activity when applied in a Zn-air battery.
Abstract: Low-cost, efficient bifunctional electrocatalysts are needed to mediate the oxygen reduction and oxygen evolution reactions (ORR/OER) in Zn-air batteries. Such catalysts should offer binary active sites and an ability to transfer oxygen-based species and electrons. A 3D catalyst, composed of nanoparticles of CoFe alloy embedded in N-doped carbon nanotubes tangled with reduced graphene oxide, was developed, which presents appreciable ORR/OER activity when applied in a Zn-air battery. A high open-circuit voltage of 1.43 V, a stable discharge voltage of 1.22 V, a high energy efficiency of 60.1 %, and excellent stability after 1 600 cycles at 10 mA cm-2 are demonstrated. An all-solid-state battery had an outstanding lifetime and high cell efficiency even upon bending. In situ X-ray absorption spectroscopy revealed that OOH* and O* intermediates induce variations in the Fe-Fe and Co-Co bond lengths, respectively, suggesting that Fe and Co species are crucial to the ORR/OER processes.

355 citations


Journal ArticleDOI
TL;DR: A versatile lithium reduction strategy to engineer the defects of oxides at room temperature leading to enhanced photocatalytic properties is developed and may be beneficial for many other related applications.
Abstract: Defects can greatly influence the properties of oxide materials; however, facile defect engineering of oxides at room temperature remains challenging. The generation of defects in oxides is difficult to control by conventional chemical reduction methods that usually require high temperatures and are time consuming. Here, we develop a facile room-temperature lithium reduction strategy to implant defects into a series of oxide nanoparticles including titanium dioxide (TiO2), zinc oxide (ZnO), tin dioxide (SnO2), and cerium dioxide (CeO2). Our lithium reduction strategy shows advantages including all-room-temperature processing, controllability, time efficiency, versatility and scalability. As a potential application, the photocatalytic hydrogen evolution performance of defective TiO2 is examined. The hydrogen evolution rate increases up to 41.8 mmol g−1 h−1 under one solar light irradiation, which is ~3 times higher than that of the pristine nanoparticles. The strategy of tuning defect oxides used in this work may be beneficial for many other related applications. Defective oxides are attractive for energy conversion and storage applications, but it remains challenging to implant defects in oxides under mild conditions. Here, the authors develop a versatile lithium reduction strategy to engineer the defects of oxides at room temperature leading to enhanced photocatalytic properties.

Journal ArticleDOI
01 Oct 2018
TL;DR: In this paper, the local geometric ligand environment and electronic metal states of oxygen-coordinated iridium centres in nickel-leached IrNi@IrOx metal oxide core-shell nanoparticles under catalytic oxygen evolution conditions were investigated.
Abstract: The electro-oxidation of water to oxygen is expected to play a major role in the development of future electrochemical energy conversion and storage technologies. However, the slow rate of the oxygen evolution reaction remains a key challenge that requires fundamental understanding to facilitate the design of more active and stable electrocatalysts. Here, we probe the local geometric ligand environment and electronic metal states of oxygen-coordinated iridium centres in nickel-leached IrNi@IrOx metal oxide core–shell nanoparticles under catalytic oxygen evolution conditions using operando X-ray absorption spectroscopy, resonant high-energy X-ray diffraction and differential atomic pair correlation analysis. Nickel leaching during catalyst activation generates lattice vacancies, which in turn produce uniquely shortened Ir–O metal ligand bonds and an unusually large number of d-band holes in the iridium oxide shell. Density functional theory calculations show that this increase in the formal iridium oxidation state drives the formation of holes on the oxygen ligands in direct proximity to lattice vacancies. We argue that their electrophilic character renders these oxygen ligands susceptible to nucleophilic acid–base-type O–O bond formation at reduced kinetic barriers, resulting in strongly enhanced reactivities. The precise understanding of the active phase under reaction conditions at the molecular level is crucial for the design of improved catalysts. Now, Strasser, Jones and colleagues correlate the high activity of IrNi@IrOx core–shell nanoparticles with the amount of lattice vacancies produced by the nickel leaching process that takes place before and during water oxidation, and elucidate the underlying structural-electronic effects.

Journal ArticleDOI
TL;DR: In this article, a high-entropy (Co,Cr, Fe, Mn, Ni)3O4 oxide, characterized by the Fd-3m single-phase, spinel structure, was synthesized for the first time.

Journal ArticleDOI
TL;DR: The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability.
Abstract: Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li+ ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni2 O3 , Mn3 O4 ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g-1 at the current density of 96 mA g-1 , good rate ability (410 mA h g-1 at 1.75 A g-1 ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability.

Journal ArticleDOI
18 Oct 2018
TL;DR: In this article, the authors describe the mechanisms by which oxygen carriers undergo redox reactions and how these carriers can be incorporated into robust chemical looping reactors, central to which are redox cycles of metal oxides.
Abstract: Chemical looping offers a versatile platform to convert fuels and oxidizers in a clean and efficient manner. Central to this technology are metal oxide materials that can oxidize fuels, affording a reduced material that can be reoxidized to close the loop. Recent years have seen substantial advances in the design, formulation and manufacture of these oxygen carrier materials and their incorporation into chemical looping reactors for the production of various chemicals. This Review describes the mechanisms by which oxygen carriers undergo redox reactions and how these carriers can be incorporated into robust chemical looping reactors. One promising technology for modern energy and chemical conversions is chemical looping, central to which are redox cycles of metal oxides. This Review describes chemical looping schemes and the mechanisms by which metal oxide particles enable these technologies.

Journal ArticleDOI
TL;DR: A promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-Iron-Copper alloy as a precursor, as the catalyst for water oxidation, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction.
Abstract: Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nick ...

Journal ArticleDOI
TL;DR: In this article, a facile approach of polymerizing the ultrathin graphene oxide on the surface of the MIL-88A(Fe) to form MIL88A (Fe)/grapheme oxide composite for enhancing the photocatalytic efficiency of organic molecules degradation was reported.
Abstract: It is very important to design excellent heterojunction structure for the improvement of the photocatalytic performance. In this study, we report a facile approach of polymerizing the ultrathin graphene oxide on the surface of the MIL-88A(Fe) to form MIL-88A(Fe)/grapheme oxide composite for enhancing the photocatalytic efficiency of organic molecules degradation. The optical grapheme oxide doping content in MIL-88A(Fe)/grapheme oxide hybrid is determined to be 9.0 wt%,which increases the surface area of the MOFs from 15.9 m 2 g −1 to 408.9 m 2 g −1 due to the emerging micropores, and the corresponding photocatalytic rate for RhB is 8.4 times higher than that of pure MIL-88A(Fe). Meanwhile, DMF-free MOF-based heterostructure could avoid secondary contamination in the photocatalytic application process, and the degree of RhB removal is maintained at about 100% after the five cycles of the reaction. Integrating the related electrochemical analysis and the active species trapping experiments, the decisive factors for the improved photocatalytic efficiency of MIL-88A(Fe)/grapheme oxide may be the unique structural advantages of ultrathin grapheme oxide sheets, compact and uniform interface contact, more adsorption sites and more reaction sites. This work provides a novel sight for preparing high-efficient and environment-stable photocatalysts by designing the surface heterojunction structure.

Journal ArticleDOI
24 Aug 2018-Science
TL;DR: This work reports an inorganic-electrolyte Li-O2 cell that cycles at an elevated temperature via highly reversible four-electron redox to form crystalline lithium oxide (Li2O), and shows that Li- O2 electrochemistry is not intrinsically limited once problems of electrolyte, superoxide, and cathode host are overcome and that coulombic efficiency close to 100% can be achieved.
Abstract: Lithium-oxygen (Li-O 2 ) batteries have attracted much attention owing to the high theoretical energy density afforded by the two-electron reduction of O 2 to lithium peroxide (Li 2 O 2 ). We report an inorganic-electrolyte Li-O 2 cell that cycles at an elevated temperature via highly reversible four-electron redox to form crystalline lithium oxide (Li 2 O). It relies on a bifunctional metal oxide host that catalyzes O–O bond cleavage on discharge, yielding a high capacity of 11 milliampere-hours per square centimeter, and O 2 evolution on charge with very low overpotential. Online mass spectrometry and chemical quantification confirm that oxidation of Li 2 O involves transfer of exactly 4 e – /O 2 . This work shows that Li-O 2 electrochemistry is not intrinsically limited once problems of electrolyte, superoxide, and cathode host are overcome and that coulombic efficiency close to 100% can be achieved.

Journal ArticleDOI
23 Jan 2018-ACS Nano
TL;DR: In this work, a facile and scalable method to synthesize hollow and conductive iron-cobalt phosphide (Fe-Co-P) alloy nanostructures using an Fe-Co metal organic complex as a precursor is described.
Abstract: Oxygen evolution reaction (OER) is a pivotal process in many energy conversion and storage techniques, such as water splitting, regenerative fuel cells, and rechargeable metal-air batteries. The synthesis of stable, efficient, non-noble metal-based electrocatalysts for OER has been a long-standing challenge. In this work, a facile and scalable method to synthesize hollow and conductive iron–cobalt phosphide (Fe–Co–P) alloy nanostructures using an Fe–Co metal organic complex as a precursor is described. The Fe–Co–P alloy exhibits excellent OER activity with a specific current density of 10 mA/cm2 being achieved at an overpotential as low as 252 mV. The current density at 1.5 V (vs reversible hydrogen electrode) of the Fe–Co–P catalyst is 30.7 mA/cm2, which is more than 3 orders of magnitude greater than that obtained with state-of-the-art Fe–Co oxide catalysts. Our mechanistic experiments and theoretical analysis suggest that the electrochemical-induced high-valent iron stabilizes the cobalt in a low-valen...

Journal ArticleDOI
Yan Li1, Yuxia Xu1, Wenping Yang1, Wanxin Shen1, Huaiguo Xue1, Huan Pang1 
01 Jun 2018-Small
TL;DR: Potential applications for MOF-derived metal oxide composites for lithium-ion batteries, sodium-ion rechargeable batteries, lithium-oxygen batteries, and supercapacitors are studied and summarized.
Abstract: Over the past two decades, metal-organic frameworks (MOFs), a type of porous material, have aroused great interest as precursors or templates for the derivation of metal oxides and composites for the next generation of electrochemical energy storage applications owing to their high specific surface areas, controllable structures, and adjustable pore sizes. The electrode materials, which affect the performance in practical applications, are pivotal components of batteries and supercapacitors. Metal oxide composites derived from metal-organic frameworks possessing high reversible capacity and superior rate and cycle performance are excellent electrode materials. In this Review, potential applications for MOF-derived metal oxide composites for lithium-ion batteries, sodium-ion batteries, lithium-oxygen batteries, and supercapacitors are studied and summarized. Finally, the challenges and opportunities for future research on MOF-derived metal oxide composites are proposed on the basis of academic knowledge from the reported literature as well as from experimental experience.

Journal ArticleDOI
TL;DR: In this article, NiFe layered double hydroxide (LDH) nanosheets were used for electrochemical oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) at the anode of an electrochemical cell.
Abstract: Electrochemical oxidation of biomass-derived platform molecules can enable the production of value-added oxygenated commodity chemicals under mild conditions in a distributed fashion using renewable electricity; however, very few efficient, robust, and inexpensive electrocatalysts are available for such electrochemical oxidation. Here we demonstrate that earth-abundant NiFe layered double hydroxide (LDH) nanosheets grown on carbon fiber paper can efficiently catalyze the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) at the anode of an electrochemical cell. A near-quantitative yield of FDCA and 99.4% Faradaic efficiency of HMF conversion under ambient conditions can be achieved in the electrochemical process. HMF has a higher rate of oxidation than water and can act as an alternative anodic reaction for alkaline H2 evolution in water-splitting cells. As the first report on using bimetallic metal hydroxide/oxide catalysts for electrochemical oxidation of HMF, this work open...

Journal ArticleDOI
TL;DR: This hybrid catalyst (Fe-Ni@NC-CNTs) significantly promotes the charge transfer efficiency and restrains the corrosion of the metallic catalysts, which is shown in a high OER and HER activity with an overpotential of 274 and 202 mV, respectively at 10 mA cm-2 in alkaline solution.
Abstract: Pyrolysis of a bimetallic metal-organic framework (MIL-88-Fe/Ni)-dicyandiamide composite yield a Fe and Ni containing carbonaceous material, which is an efficient bifunctional electrocatalyst for overall water splitting. FeNi3 and NiFe2 O4 are found as metallic and metal oxide compounds closely embedded in an N-doped carbon-carbon nanotube matrix. This hybrid catalyst (Fe-Ni@NC-CNTs) significantly promotes the charge transfer efficiency and restrains the corrosion of the metallic catalysts, which is shown in a high OER and HER activity with an overpotential of 274 and 202 mV, respectively at 10 mA cm-2 in alkaline solution. When this bifunctional catalyst was further used for H2 and O2 production in an electrochemical water-splitting unit, it can operate in ambient conditions with a competitive gas production rate of 1.15 and 0.57 μL s-1 for hydrogen and oxygen, respectively, showing its potential for practical applications.

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper synthesized sandwiched nanocomposites made of Fe3O4 nanoparticles, poly(allylamine) hydrochloride molecules, and carboxylate graphene oxide sheets using a layer-by-layer self-assembly method.
Abstract: Two-dimensional (2D) carbon nanomaterials generally display some limitations in adsorption applications due to easy agglomeration. To solve this problem, as-synthesized sandwiched nanocomposites made of Fe3O4 nanoparticles, poly(allylamine) hydrochloride molecules, and carboxylate graphene oxide sheets were prepared using a layer-by-layer (LbL) self-assembly method. The successfully synthesized sandwiched structures in the present nanocomposites have outstanding organic dye adsorption performance, stability, and recycling. The agglomeration of carboxylate graphene oxide was reduced with increased specific surface area because the Fe3O4 nanoparticles play important roles in interpenetrating and supporting graphene oxide sheets layers. In comparison with other kinds of composite adsorbents, the preparation process of the present new sandwiched composite materials is facile to operate and regulate, which demonstrates potential large-scale applications in wastewater treatment and dye removal.

Journal ArticleDOI
TL;DR: A universal electrosynthesis of metal hydroxides/oxides on varied substrates via reduction of oxyacid anions is reported, finding that the insertion of nitrate ion in graphene layers significantly enhances the electrodeposit–support interface, resulting in high mass loading and super hydrophilic/aerophobic properties.
Abstract: Electrochemical deposition is a facile strategy to prepare functional materials but suffers from limitation in thin films and uncontrollable interface engineering. Here we report a universal electrosynthesis of metal hydroxides/oxides on varied substrates via reduction of oxyacid anions. On graphitic substrates, we find that the insertion of nitrate ion in graphene layers significantly enhances the electrodeposit–support interface, resulting in high mass loading and super hydrophilic/aerophobic properties. For the electrocatalytic oxygen evolution reaction, the nanocrystalline cerium dioxide and amorphous nickel hydroxide co-electrodeposited on graphite exhibits low overpotential (177 mV@10 mA cm−2) and sustains long-term durability (over 300 h) at a large current density of 1000 mA cm−2. In situ Raman and operando X-ray diffraction unravel that the integration of cerium promotes the formation of electrocatalytically active gamma-phase nickel oxyhydroxide with exposed (003) facets. Therefore, combining anion intercalation with cathodic electrodeposition allows building robust electrodes with high electrochemical performance.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that the ultrathin amorphous cobalt-vanadium hydr(oxy)oxide is a highly promising electrocatalytic material for the oxygen evolution reaction (OER) with a low overpotential of 0.250 V (even lower down to 0.215 V when supported on Au foam).
Abstract: Cost efficient and long-term stable catalysts are in great demand for the oxygen evolution reaction (OER), a key process involved in water splitting cells and metal–air batteries. Here, we demonstrate that the ultrathin amorphous cobalt–vanadium hydr(oxy)oxide we synthesized is a highly promising electrocatalytic material for the OER with a low overpotential of 0.250 V (even lower down to 0.215 V when supported on Au foam) at 10 mA cm−2 and a long stable operation time (170 h) in alkaline media. In combination with in situ X-ray absorption spectral characterization and first-principles simulations, we reveal that the ultrathin, amorphous and alloyed structural characteristics have enabled its facile transformation to the desirable active phase, leading to a dramatically enhanced catalytic activity. Our finding highlights the remarkable advantages of the two-dimensional amorphous material and sheds new light on the design of high-performance electrocatalysts.

Journal ArticleDOI
TL;DR: In this article, NiCoFe-layered double hydroxide (NiCoIIIFe-LDH) with Co3+ is grafted on nitrogen-doped graphene oxide (N-GO) by an in situ growth route.
Abstract: Ternary NiCoFe-layered double hydroxide (NiCoIIIFe-LDH) with Co3+ is grafted on nitrogen-doped graphene oxide (N-GO) by an in situ growth route. The array-like colloid composite of NiCoIIIFe-LDH/N-GO is used as a bifunctional catalyst for both oxygen evolution/reduction reactions (OER/ORR). The NiCoIIIFe-LDH/N-GO array has a 3D open structure with less stacking of LDHs and an enlarged specific surface area. The hierarchical structure design and novel material chemistry endow high activity propelling O2 redox. By exposing more amounts of Ni and Fe active sites, the NiCoIIIFe-LDH/N-GO illustrates a relatively low onset potential (1.41 V vs reversible hydrogen electrode) in 0.1 mol L−1 KOH solution under the OER process. Furthermore, by introducing high valence Co3+, the onset potential of this material in ORR is 0.88 V. The overvoltage difference is 0.769 V between OER and ORR. The key factors for the excellent bifunctional catalytic performance are believed to be the Co with a high valence, the N-doping of graphene materials, and the highly exposed Ni and Fe active sites in the array-like colloid composite. This work further demonstrates the possibility to exploit the application potential of LDHs as OER and ORR bifunctional electrochemical catalysts.

Journal ArticleDOI
TL;DR: In this paper, the chemical exfoliation and thermal annealing methods are appraised as an inventive route towards the production of graphene at prodigious scale, which is used for the oxidation of graphite flakes having an oxidizing specialist.

Journal ArticleDOI
03 May 2018-ACS Nano
TL;DR: Bottom-up soft-patterning of regular carbon arrays on free-standing 2D surfaces should enable conductive carbon supports that boost the performance of electrocatalytic active sites.
Abstract: Triblock copolymer micelles coated with melamine-formaldehyde resin were self-assembled into closely packed two-dimensional (2D) arrangements on the surface of graphene oxide sheets. Carbonizing these structures created a 2D architecture composed of reduced graphene oxide (rGO) sandwiched between two monolayers of sub-40 nm diameter hollow nitrogen-doped carbon nanospheres (N-HCNS). Electrochemical tests showed that these hybrid structures had better performance for oxygen reduction compared to physically mixed rGO and N-HCNS that were not chemically bonded together. Further impregnation of the sandwich structures with iron (Fe) species followed by carbonization yielded Fe1.6-N-HCNS/rGO-900 with a high specific surface area (968.3 m2 g–1), a high nitrogen doping (6.5 at%), and uniformly distributed Fe dopant (1.6 wt %). X-ray absorption fine structure analyses showed that most of the Fe in the nitrogen-doped carbon framework is composed of single Fe atoms each coordinated to four N atoms. The best Fe1.6-N...

Journal ArticleDOI
TL;DR: Primary-ion mass spectrometry measurements show that only a small fraction of the original 18 O content remains, showing that residual oxides are not present in significant amounts during CO2 R, and it is shown that OD Cu can reoxidize rapidly, which could compromise the accuracy of ex-situ methods for determining the true oxygen content.
Abstract: Oxide-derived (OD) Cu catalysts have high selectivity towards the formation of multi-carbon products (C2 /C3 ) for aqueous electrochemical CO2 reduction (CO2 R). It has been proposed that a large fraction of the initial oxide can be surprisingly resistant to reduction, and these residual oxides play a crucial catalytic role. The stability of residual oxides was investigated by synthesizing 18 O-enriched OD Cu catalysts and testing them for CO2 R. These catalysts maintain a high selectivity towards C2 /C3 products (ca. 60 %) for up to 5 h in 0.1 m KHCO3 at -1.0 V vs. RHE. However, secondary-ion mass spectrometry measurements show that only a small fraction (<1 %) of the original 18 O content remains, showing that residual oxides are not present in significant amounts during CO2 R. Furthermore, we show that OD Cu can reoxidize rapidly, which could compromise the accuracy of ex situ methods for determining the true oxygen content.

Journal ArticleDOI
02 Jul 2018
TL;DR: In this article, the authors apply density functional theory, together with a statistical learning approach based on least absolute shrinkage and selection operator regression, to identify property descriptors that predict interaction strengths between single metal atoms and oxide supports.
Abstract: Single-atom catalysts offer high reactivity and selectivity while maximizing utilization of the expensive active metal component. However, they are susceptible to sintering, where single metal atoms agglomerate into thermodynamically stable clusters. Tuning the binding strength between single metal atoms and oxide supports is essential to prevent sintering. We apply density functional theory, together with a statistical learning approach based on least absolute shrinkage and selection operator regression, to identify property descriptors that predict interaction strengths between single metal atoms and oxide supports. Here, we show that interfacial binding is correlated with readily available physical properties of both the supported metal, such as oxophilicity measured by oxide formation energy, and the support, such as reducibility measured by oxygen vacancy formation energy. These properties can be used to empirically screen interaction strengths between metal–support pairs, thus aiding the design of single-atom catalysts that are robust against sintering.