scispace - formally typeset
Topic

Oxygen

About: Oxygen is a(n) research topic. Over the lifetime, 48149 publication(s) have been published within this topic receiving 1113788 citation(s). The topic is also known as: O & Oxygen.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Abstract: We present a method for calculating the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations. We used that method in combination with detailed density functional calculations to develop a detailed description of the free-energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias. This allowed us to identify the origin of the overpotential found for this reaction. Adsorbed oxygen and hydroxyl are found to be very stable intermediates at potentials close to equilibrium, and the calculated rate constant for the activated proton/electron transfer to adsorbed oxygen or hydroxyl can account quantitatively for the observed kinetics. On the basis of a database of calculated oxygen and hydroxyl adsorption energies, the trends in the oxygen reduction rate for a large number of different transition and noble metals can be accounted for. Alternative reaction mechanisms involving proton/electron transfer to ...

5,473 citations

Journal ArticleDOI

[...]

5,078 citations

Journal ArticleDOI

[...]

15 Feb 2010-ACS Nano
TL;DR: The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells.
Abstract: Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells. To the best of our knowledge, this is the first report on the use of graphene and its derivatives as metal-free catalysts for oxygen reduction. The important role of N-doping to oxygen reduction reaction (ORR) can be applied to various carbon materials for the development of other metal-free efficient ORR catalysts for fuel cell applications, even new catalytic materials for applications beyond fuel cells.

3,360 citations

Journal ArticleDOI

[...]

22 Aug 2008-Science
TL;DR: A catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions is reported that not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.
Abstract: The utilization of solar energy on a large scale requires its storage. In natural photosynthesis, energy from sunlight is used to rearrange the bonds of water to oxygen and hydrogen equivalents. The realization of artificial systems that perform "water splitting" requires catalysts that produce oxygen from water without the need for excessive driving potentials. Here we report such a catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions. A variety of analytical techniques indicates the presence of phosphate in an approximate 1:2 ratio with cobalt in this material. The pH dependence of the catalytic activity also implicates the hydrogen phosphate ion as the proton acceptor in the oxygen-producing reaction. This catalyst not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.

3,351 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the fluorescence of various fluorophores by molecular oxygen has been studied in aqueous and nonaqueous solutions equilibrated with oxygen pressures up to 100 atm.
Abstract: Quenching of the fluorescence of various fluorophores by molecular oxygen has been studied in aqueous and nonaqueous solutions equilibrated with oxygen pressures up to 100 atm. Temperature dependence of quenching, agreement with the Stern–Volmer equation, and fluorescence lifetime measurements indicate that essentially all the observed quenching is dynamic and close to the diffusion-controlled limits. Studies of charged polyamino acids containing tryptophan show that oxygen quenching, in contrast to I−, is completely insensitive to charge effects. Ethidium bromide, when intercalated into double helical DNA, is quenched with 1/30th of the efficiency of the free dye in solution. Three dyes bound to bovine serum albumin were also found to be relatively protected from the free diffusion of oxygen. Quenching of intrinsic or bound fluorophores by molecular oxygen is therefore an appropriate method to determine the accessibility to oxygen of regions of the macromolecule surrounding the fluorophore and indirectly the structural fluctuations in the macromolecule that permit its diffusion to the fluorophore.

2,300 citations


Network Information
Related Topics (5)
Electrolyte
124.6K papers, 2.3M citations
85% related
Carbon
129.8K papers, 2.7M citations
82% related
Hydrogen
132.2K papers, 2.5M citations
81% related
Oxide
213.4K papers, 3.6M citations
80% related
Aqueous solution
189.5K papers, 3.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202279
20211,114
20201,160
20191,190
20181,152
20171,079