scispace - formally typeset
Search or ask a question

Showing papers on "Oxygen published in 2010"


Journal ArticleDOI
15 Feb 2010-ACS Nano
TL;DR: The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells.
Abstract: Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells. To the best of our knowledge, this is the first report on the use of graphene and its derivatives as metal-free catalysts for oxygen reduction. The important role of N-doping to oxygen reduction reaction (ORR) can be applied to various carbon materials for the development of other metal-free efficient ORR catalysts for fuel cell applications, even new catalytic materials for applications beyond fuel cells.

3,604 citations


Journal ArticleDOI
25 Mar 2010-Nature
TL;DR: Evidence for a fourth pathway to produce oxygen is presented, possibly of considerable geochemical and evolutionary importance, and opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.
Abstract: Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named ‘Candidatus Methylomirabilis oxyfera’, was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that ‘M. oxyfera’ bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis. A previously unknown pathway producing oxygen during anaerobic methane oxidation linked to nitrite and nitrate reduction has been found in microbes isolated from freshwater sediments in Dutch drainage ditches. The complete genome of the bacterium responsible for this reaction has been assembled, and found to contain genes for aerobic methane oxidation. The bacterium reduces nitrite via the recombination of two molecules of nitric oxide into nitrogen and oxygen, bypassing the familiar denitrification intermediate nitrous oxide. This discovery is relevant to nitrogen and methane cycling in the environment and, since nitrogen oxides arose early on Earth, raises the possibility that oxygen was available to microbes before the advent of oxygen-producing photosynthesis. In certain microbes, the anaerobic oxidation of methane can be linked to the reduction of nitrates and nitrites. Here it is shown that this occurs through the intermediate production of oxygen. This brings the number of known biological pathways for oxygen production to four, with implications for our understanding of life on the early Earth.

1,463 citations


Journal ArticleDOI
TL;DR: Physical and chemical characterization of the nanostructured Mn oxide bifunctional catalyst reveals an oxidation state of Mn(III), akin to one of the most commonly observed Mn oxidation states found in the OEC.
Abstract: There is a growing interest in oxygen electrochemistry as conversions between O(2) and H(2)O play an important role in a variety of renewable energy technologies. The goal of this work is to develop active bifunctional catalyst materials for water oxidation and oxygen reduction. Drawing inspiration from a cubane-like CaMn(4)O(x), the biological catalyst found in the oxygen evolving center (OEC) in photosystem II, nanostructured manganese oxide surfaces were investigated for these reactions. Thin films of nanostructured manganese oxide were found to be active for both oxygen reduction and water oxidation, with similar overall oxygen electrode activity to the best known precious metal nanoparticle catalysts: platinum, ruthenium, and iridium. Physical and chemical characterization of the nanostructured Mn oxide bifunctional catalyst reveals an oxidation state of Mn(III), akin to one of the most commonly observed Mn oxidation states found in the OEC.

1,400 citations


Journal ArticleDOI
01 Oct 2010-Science
TL;DR: Study of the mechanism of ethanol and glycerol oxidation to acids over various supported gold and platinum catalysts finds that oxygen atoms originating from hydroxide ions instead of molecular oxygen are incorporated into the alcohol during the oxidation reaction.
Abstract: The selective oxidation of alcohols in aqueous phase over supported metal catalysts is facilitated by high-pH conditions. We have studied the mechanism of ethanol and glycerol oxidation to acids over various supported gold and platinum catalysts. Labeling experiments with (18)O(2) and H(2)(18)O demonstrate that oxygen atoms originating from hydroxide ions instead of molecular oxygen are incorporated into the alcohol during the oxidation reaction. Density functional theory calculations suggest that the reaction path involves both solution-mediated and metal-catalyzed elementary steps. Molecular oxygen is proposed to participate in the catalytic cycle not by dissociation to atomic oxygen but by regenerating hydroxide ions formed via the catalytic decomposition of a peroxide intermediate.

848 citations


Journal ArticleDOI
TL;DR: It is proposed that oxygen molecular anions are stabilized by water solvation and electrostatic binding to the silicon dioxide surface and become stronger and more irreversible in the presence of moisture and over long periods of time.
Abstract: Using micro-Raman spectroscopy and scanning tunneling microscopy, we study the relationship between structural distortion and electrical hole doping of graphene on a silicon dioxide substrate. The observed upshift of the Raman G band represents charge doping and not compressive strain. Two independent factors control the doping: (1) the degree of graphene coupling to the substrate and (2) exposure to oxygen and moisture. Thermal annealing induces a pronounced structural distortion due to close coupling to SiO2 and activates the ability of diatomic oxygen to accept charge from graphene. Gas flow experiments show that dry oxygen reversibly dopes graphene; doping becomes stronger and more irreversible in the presence of moisture and over long periods of time. We propose that oxygen molecular anions are stabilized by water solvation and electrostatic binding to the silicon dioxide surface.

745 citations


Journal ArticleDOI
TL;DR: In this paper, a series of manganese oxides differing in the structure, composition, average menganese oxidation state and specific surface area have been used in the total oxidation of volatile organic compounds (VOC).
Abstract: A series of manganese oxides differing in the structure, composition, average manganese oxidation state and specific surface area have been used in the total oxidation of volatile organic compounds (VOC). Ethanol, ethyl acetate and toluene were chosen as models of VOC. Among the manganese oxides tested, cryptomelane (KMn8O16) was found to be very active in the oxidation of VOC. The performance of cryptomelane was significantly affected by the presence of other phases, namely, Mn2O3 and Mn3O4. Temperature-programmed experiments combined with X-ray photoelectron spectroscopy (XPS) show that the mobility and reactivity of the oxygen species were significantly affected, explaining the catalytic performances of those samples. Mn3O4 improves the catalytic performance due to the increase of the reactivity and mobility of lattice oxygen, while Mn2O3 has the opposite effect. These results show that there is a correlation between the redox properties and the catalytic performance of the manganese oxides. Temperature-programmed surface reactions (TPSR) after adsorption of toluene or ethanol, in addition to reactions performed without oxygen in the feed, show that lattice oxygen is involved in the VOC oxidation mechanism. The conversion level was found to be influenced by the type of VOC, the reactivity into CO2 increasing in the following order: Toluene

553 citations


Journal ArticleDOI
TL;DR: The oxygen uptake rate (THE AUTHORS') in different fermentation broths is examined and the reciprocal influence of THEIR and OTR is presented and an analysis of rate-limiting variables is carried out.

376 citations


Book ChapterDOI
TL;DR: Methods for determining total ROS and lipid peroxidation assay, histochemical staining techniques for superoxide and H( 2)O(2) molecules are described.
Abstract: Reactive oxygen species or intermediates are formed by the incomplete reduction of oxygen. Organisms living in aerobic environment generate various kinds of reactive oxygen species (ROS) molecules, such as superoxide (*O(2)(-)), hydrogen peroxide (H(2)O(2)), hydroxyl radical (OH(-)), singlet oxygen, and lipid hydroperoxides. ROS are highly reactive molecules and are extremely unstable, so detection of ROS relies on measuring the end products that are formed when they react with particular substances. The end products can be measured by changes in their fluorescence, color, or luminescence. ROS causes lipid peroxidation wherein the lipids in the cell membranes are damaged. Lipid peroxidation is usually quantified using a colorimetric assay. When ROS concentrations reach a certain threshold, it activates a programmed cell death response in the cells. This is quantified by measuring the amount of ion leakage. ROS such as superoxide and hydrogen peroxide have been detected traditionally by staining techniques. Superoxide anion is detected with nitroblue tetrazolium (NBT) and hydrogen peroxide by Diaminobenzidine tetrahydrochloride (DAB) staining. In this chapter, methods for determining total ROS and lipid peroxidation assay, histochemical staining techniques for superoxide and H(2)O(2) molecules are described.

347 citations


Journal ArticleDOI
TL;DR: In this paper, a new approach to synthesize nitrogen-doped carbon nanotubes (NCNTs) as catalysts for oxygen reduction by treating oxidized CNTs with ammonia is presented.

301 citations


Journal ArticleDOI
TL;DR: This work presents an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions, based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered.
Abstract: The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

274 citations


Journal ArticleDOI
TL;DR: In this article, the degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied.
Abstract: The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850 degrees C, at current densities of -1.0, -1.5, and -2.0 A/cm(2), with a 50:50 (H(2)O:H(2)) gas supplied to the Ni/YSZ hydrogen electrode and oxygen supplied to the lanthanum, strontium manganite (LSM)/YSZ oxygen electrode. Electrode polarization resistance degradation is not directly related to the applied current density but rather a consequence of adsorbed impurities in the Ni/YSZ hydrogen electrode. However, the ohmic resistance degradation increases with applied current density. The ohmic resistance degradation is attributed to oxygen formation in the YSZ electrolyte grain boundaries near the oxygen electrode/electrolyte interface. (C) 2010 The Electrochemical Society. [DOI:10.1149/1.3447752] All rights reserved.

Journal ArticleDOI
Ki Rak Lee1, Kye Ung Lee1, Jong Wook Lee1, Byung Tae Ahn1, Seong Ihl Woo1 
TL;DR: In this article, Nitrogen doped graphene were prepared via exfoliated graphite oxide, which exhibited significantly high oxygen reduction activity, high electric conductivity, high surface area, large amount of edge sites and pyridinic N site in reduced graphene sheets.

Journal ArticleDOI
TL;DR: Oxygen has a central role in the evolution of complex life on Earth mainly because of the biochemical symmetry of oxygenic photosynthesis and aerobic respiration that can maintain homeostasis within the authors' planet biosphere.
Abstract: Oxygen has a central role in the evolution of complex life on Earth mainly because of the biochemical symmetry of oxygenic photosynthesis and aerobic respiration that can maintain homeostasis within our planet biosphere. Oxygen can also produce toxic molecules, reactive oxygen species (ROS). ROS is a collective term that includes both oxygen radicals and certain oxidizing agents that are easily converted into radicals. They can be produced from both endogenous and exogenous substances. ROS play a dual role in biological systems, since they can be either harmful or beneficial to living systems. They can be considered a double-edged sword because on the one hand oxygen-dependent reactions and aerobic respiration have significant advantages but, on the other, overproduction of ROS has the potential to cause damage.

Journal ArticleDOI
TL;DR: It is demonstrated that charging the defect significantly affects the reactivity by following the reaction of molecular oxygen with surface hydroxyl formed by water dissociation at the vacancies, in line with experimental observations.
Abstract: Oxygen vacancies on metal oxide surfaces have long been thought to play a key role in the surface chemistry. Such processes have been directly visualized in the case of the model photocatalyst surface TiO(2)(110) in reactions with water and molecular oxygen. These vacancies have been assumed to be neutral in calculations of the surface properties. However, by comparing experimental and simulated scanning tunneling microscopy images and spectra, we show that oxygen vacancies act as trapping centers and are negatively charged. We demonstrate that charging the defect significantly affects the reactivity by following the reaction of molecular oxygen with surface hydroxyl formed by water dissociation at the vacancies. Calculations with electronically charged hydroxyl favor a condensation reaction forming water and surface oxygen adatoms, in line with experimental observations. This contrasts with simulations using neutral hydroxyl where hydrogen peroxide is found to be the most stable product.

Journal ArticleDOI
TL;DR: In this article, the authors showed that HPAM polyacrylamide copolymers can maintain at least half their original viscosity for more than 8 years at 100°C and for approximately 2 years at 120°C.
Abstract: Summary At elevated temperatures in aqueous solution, partially hydrolyzed polyacrylamides (HPAMs) experience hydrolysis of amide side groups. However, in the absence of dissolved oxygen and divalent cations, the polymer backbone can remain stable so that HPAM solutions were projected to maintain at least half their original viscosity for more than 8 years at 100°C and for approximately 2 years at 120°C. Within our experimental error, HPAM stability was the same with and without oil (decane). An acrylamide-AMPS copolymer [with 25% 2-acrylamido-2-methylpropane sulphonic acid (AMPS)] showed similar stability to that for HPAM. Stability results were similar in brines with 0.3% NaCl, 3% NaCl, or 0.2% NaCl plus 0.1% NaHCO3. At temperatures of 160°C and greater, the polymers were more stable in brine with 2% NaCl plus 1% NaHCO3 than in the other brines. Even though no chemical oxygen scavengers or antioxidants were used in our study, we observed the highest level of thermal stability reported to date for these polymers. Our results provide considerable hope for the use of HPAM polymers in enhanced oil recovery (EOR) at temperatures up to 120°C if contact with dissolved oxygen and divalent cations can be minimized. Calculations performed considering oxygen reaction with oil and pyrite revealed that dissolved oxygen will be removed quickly from injected waters and will not propagate very far into porous reservoir rock. These findings have two positive implications with respect to polymer floods in high-temperature reservoirs. First, dissolved oxygen that entered the reservoir before polymer injection will have been consumed and will not aggravate polymer degradation. Second, if an oxygen leak (in the surface facilities or piping) develops during the course of polymer injection, that oxygen will not compromise the stability of the polymer that was injected before the leak developed or the polymer that is injected after the leak is fixed. Of course, the polymer that is injected while the leak is active will be susceptible to oxidative degradation. Maintaining dissolved oxygen at undetectable levels is necessary to maximize polymer stability. This can be accomplished readily without the use of chemical oxygen scavengers or antioxidants.

Journal ArticleDOI
TL;DR: In this paper, the evolution of electronic energy levels of controlled air and oxygen exposed molybdenum trioxide (MoO3) films has been investigated with ultraviolet photoemission spectroscopy, inverse photo-emission spectrum analysis, and x-ray photoEMission spectra.
Abstract: The evolution of electronic energy levels of controlled air and oxygen exposed molybdenum trioxide (MoO3) films has been investigated with ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, and x-ray photoemission spectroscopy. We found that while most of the electronic levels of as deposited MoO3 films remained largely intact, the reduction in the work function (WF) was substantial. The gradual surface WF change from 6.8 to 5.3 eV was observed for air exposed film, while oxygen exposed film the surface WF saturated at ∼5.7 eV. Two distinct stages of exposure are observed, the first dominated by oxygen adsorption for 1013 L.

Journal ArticleDOI
TL;DR: The structural, chemical and electronic changes of ceria as a function of decreasing particle size have been studied: at sizes below 5 nm the total amount of reducible oxygen dramatically increases due to superoxide formation on the ceria surface, a result indicative of a size dependent oxygen buffering capacity.

Journal ArticleDOI
TL;DR: In this article, the impact of oxygen evolution and bubble formation on the performance of an all-vanadium redox flow battery is investigated using a two-dimensional, non-isothermal model.

Journal ArticleDOI
TL;DR: Changes in the availability of intracellular oxygen and in the generation of reactive oxygen species that accompany these interactions result in cell signaling and in regulation of oxygen-sensitive pathways that ultimately determine the nature of the cellular response to hypoxia.
Abstract: Cytochrome c oxidase (CcO; complex IV of the mitochondrial electron transport chain) is the primary site of cellular oxygen consumption and, as such, is central to oxidative phosphorylation and the generation of adenosine-triphosphate. Nitric oxide (NO), an endogenously-generated gas, modulates the activity of CcO. Depending on the intracellular oxygen concentration and the resultant dominant redox state of CcO, the interaction between CcO and NO can have a range of signaling consequences for cells in the perception of changes in oxygen concentration and the initiation of adaptive responses. At higher oxygen concentrations, when CcO is predominantly in an oxidized state, it consumes NO. At lower oxygen concentrations, when CcO is predominantly reduced, NO is not consumed and accumulates in the microenvironment, with implications for both the respiratory rate of cells and the local vascular tone. Changes in the availability of intracellular oxygen and in the generation of reactive oxygen species that accompany these interactions result in cell signaling and in regulation of oxygen-sensitive pathways that ultimately determine the nature of the cellular response to hypoxia.

Journal ArticleDOI
TL;DR: Photooxygenation of p-xylene by oxygen occurs efficiently under photoirradiation of 9-mesityl-2,7,10-trimethylacridinium ion to yield p-tolualdehyde and hydrogen peroxide, which is initiated via photoinduced electron transfer of Me(2)Acr(+)-Mes to produce the electron-transfer state.

Journal ArticleDOI
TL;DR: In this paper, a fluorinated polyimide precursor for carbon molecular sieve (CMS) membranes was explored, and a strong correlation was found between the amount of oxygen available during pyrolysis and separation performances, thereby supporting the above hypothesis.

Journal ArticleDOI
TL;DR: In this article, the selective oxidation of methane to syngas using a gas-solid reaction was investigated at 850°C, where only small amounts of iron ions could be incorporated into the CeO2 lattice with the superfluous Fe2O3 remaining on the surface of the molecule.
Abstract: CeO2, Fe2O3, Fe2O3/Al2O3 and Ce–Fe mixed oxides with different Ce/Fe ratios were prepared and characterized using XRD, Raman, XPS, and H2–TPR techniques. The selective oxidation of methane to syngas using a gas–solid reaction was investigated at 850 °C. For binary Ce–Fe oxides, only small amounts of iron ions could be incorporated into the CeO2 lattice with the superfluous Fe2O3 remaining on the surface of the molecule. Chemical interactions between surface iron sites and the Ce–Fe solid solution strongly enhanced the reducibility of materials. Methane was found to adsorb and activate on the surface iron sites as carbonaceous species and hydrogen. Carbon deposition was selectively oxidized to CO by the release of activated oxygen from the CeO2 lattice. The activation rate of methane was dependent on the quality of dispersion of surface Fe species, while the oxygen mobility of the material dominated the CO formation rate. Hydrothermally prepared Ce0.7Fe0.3O2−δ showed high activity and selectivity during the successive production of syngas using repetitive redox processes (methane reduction/air re-oxidation). Both the dispersion of surface Fe2O3 and the formation of the Ce–Fe solid solution were enhanced by the redox treatment, which made the oxygen carrier more stable.

Journal ArticleDOI
TL;DR: In this paper, it is estimated that 5% to 6% of the molecular oxygen is consumed without forming sulfate, while hydroxyl radical does not play a significant role in the oxidation mechanism.

Journal ArticleDOI
TL;DR: In this paper, the photoelectric conversion efficiency of dye-sensitized solar cells fabricated from 1 mol % La-doped anatase TiO2 reached 6.72%.
Abstract: Facilitated by TiO2 particles absorbing La3+ in hydrosol, La-doped TiO2 was prepared by a sol-hydrothermal method. Electron paramagnetic resonance and Brunauer−Emmett−Teller (BET) surface area analysis showed that the obtained La-doped anatase TiO2 surface provided a higher density of oxygen vacancies without a change in the BET surface area. A theoretical calculation was carried out to explain the generation mechanism of the increased oxygen vacancies. The results showed that the La-doped anatase TiO2 (101) surface tends to engender oxygen vacancies. The photoelectric conversion efficiency of dye-sensitized solar cells fabricated from 1 mol % La-doped TiO2 reached 6.72%, which gave an efficiency improved by 13.5% compared with that of the cells fabricated from pure TiO2. The improvement in the efficiency was ascribed to more dye absorbed on the surface of TiO2.

Journal ArticleDOI
TL;DR: Production of reactive oxygen species (ROS) during irradiation occurs and is evidence for potential further phototransformation and may be significant in assessing their overall environmental impacts.
Abstract: Very limited information exists on transformation processes of carbon nanotubes in the natural aquatic environment. Because the conjugated pi-bond structure of these materials is efficient in absorbing sunlight, photochemical transformations are a potential fate process with reactivity predicted to vary with their diameter, chirality, number and type of defects, functionalization, residual metal catalyst and amorphous carbon content, and with the composition of the water, including the type and composition of materials that act to disperse them into the aqueous environment. In this study, the photochemical reactions involving colloidal dispersions of carboxylated single-walled carbon nanotubes (SWNT-COOH) in sunlight were examined. Production of reactive oxygen species (ROS) during irradiation occurs and is evidence for potential further phototransformation and may be significant in assessing their overall environmental impacts. In aerated samples exposed to sunlight or to lamps that emit light only within the solar spectrum, the probe compounds, furfuryl alcohol (FFA), tetrazolium salts (NBT2+ and XTT), and p-chlorobenzoic acid (pCBA), were used to indicate production of 1O2, O2.-, and .OH, respectively. All three ROS were produced in the presence of SWNT-COOH and molecular oxygen (3O2). 1O2 production was confirmed by observing enhanced FFA decay in deuterium oxide, attenuated decay of FFA in the presence of azide ion, and the lack of decay of FFA in deoxygenated solutions. Photogeneration of O2.- and .OH was confirmed by applying superoxide dismutase (SOD) and tert-butanol assays, respectively. In air-equilibrated suspensions, the loss of 0.2 mM FFA in 10 mg/L SWNT-COOH was approximately 85% after 74 h. Production of 1O2 was not dependent on pH from 7 to 11; however photoinduced aggregation was observed at pH 3.

Journal ArticleDOI
TL;DR: In this article, various candidate materials were proposed for the oxygen carrier and support, and a thermal analysis of the three-reactor chemical-looping process was performed, and the results indicated that hydrogen production was affected mainly by the steam-conversion rate.

Journal ArticleDOI
TL;DR: In this article, it was shown that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes.
Abstract: Molecular oxygen (O2) is the second most abundant gas in the Earth’s atmosphere, but in many natural environments, its concentration is reduced to low or even undetectable levels. Although low-oxygen-adapted organisms define the ecology of low-oxygen environments, their capabilities are not fully known. These capabilities also provide a framework for reconstructing a critical period in the history of life, because low, but not negligible, atmospheric oxygen levels could have persisted before the “Great Oxidation” of the Earth’s surface about 2.3 to 2.4 billion years ago. Here, we show that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history of aerobic organisms.

Journal ArticleDOI
TL;DR: In this paper, an extensive set of DFT calculations on LaMnO3 slabs has been generated and used as a basis to identify the most probable reaction mechanism for oxygen incorporation into (La, Sr) MnO3−δ cathode materials.
Abstract: An extensive set of DFT calculations on LaMnO3 slabs has been generated and used as a basis to identify the most probable reaction mechanism for oxygen incorporation into (La, Sr)MnO3−δ cathode materials. MnO2[001] is found to be the most stable surface termination under fuel cell operation conditions (high temperature, high pO2, cubic unit cell). Chemisorption leading to the formation of O2−, O22−, and O− atop Mn is exothermic, but due to the negative adsorption entropy and electrostatic repulsion the levels of coverage of molecular oxygen adsorbates are low (in the few percent range). Under typical solid oxide fuel cell conditions, a mechanism in which the encounter of O− with a surface oxygen vacancy at the surface is rate-determining exhibits the fastest rate. The variation of the reaction rate and preferred mechanism(s) with adsorbate and point defect concentrations is discussed.

Journal ArticleDOI
TL;DR: In this article, the catalytic behaviors of metal oxides and Ag-loaded CeO2 have been studied for soot oxidation by O2 in tight contact condition, and it is concluded that a strong interaction between supported silver nanoparticles and CeO 2 surface results in the formation of highly reducible surface oxygen at silver-ceria interface, whose reactivity for so-ot oxidation is similar to the surface oxygen of Ag2O.
Abstract: The catalytic behaviors of metal oxides and Ag-loaded CeO2 have been studied for soot oxidation by O2 in tight contact condition. Ag2O, as the most active oxide among 30 kinds of metal oxides tested, showed high activity even under inert atmosphere. However, Ag2O completely deactivated after the first catalytic run because of its conversion to Ag metal particle, indicating that Ag2O does not act as a catalyst but as a strong oxidant for soot combustion. Ag(20 wt%)-loaded CeO2 (Ag20Ce), consisted of silver metal nanoparticles on CeO2, showed higher activity than CeO2, and the catalyst showed high durability. Kinetic studies for soot oxidation under O2 and He showed that the activation energy changed in the order CeO2 > Ag2O ≈ Ag20Ce, and activation energy under O2 was close to those under He, indicating that surface oxygen plays an important role in catalytic soot oxidation in the presence of O2 and active oxygen species of Ag20Ce and Ag2O have similar nature. Time-resolved UV–vis analysis of Ce4+/Ce3+ redox kinetics under reducing (H2) and oxidizing (O2) atmosphere showed that the presence of Ag on CeO2 enhanced the reduction of Ce4+ to Ce3+ but did not enhance the re-oxidation of Ce3+. It is concluded that a strong interaction between supported silver nanoparticle and CeO2 surface results in the formation of highly reducible surface oxygen at silver-ceria interface, whose reactivity for soot oxidation is similar to the surface oxygen of Ag2O.

Journal ArticleDOI
TL;DR: Two aspects of research on the TMIs Cu, Co, and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species.
Abstract: Zeolites containing transition-metal ions (TMIs) often show promising activity as heterogeneous catalysts in pollution abatement and selective oxidation reactions. In this paper, two aspects of research on the TMIs Cu, Co, and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species. At low loading, TMIs preferably occupy exchange sites in six-membered oxygen rings (6MR), where the TMIs preferentially coordinate with the O atoms of Al tetrahedra. High TMI loadings result in a variety of TMI species formed at the zeolite surface. Removal of the extralattice O atoms during high-temperature pretreatments can result in autoreduction. Oxidation of reduced TMI sites often results in the formation of highly reactive oxygen species. In Cu-ZSM-5, calcination with O2 results in the formation of a species, which was found to be a crucial intermediate in both the direct decomposition of NO and N2O and the selective oxidation of methane into methanol. An activated oxygen species,...