scispace - formally typeset
Search or ask a question
Topic

Ozone depletion

About: Ozone depletion is a research topic. Over the lifetime, 3950 publications have been published within this topic receiving 161237 citations. The topic is also known as: ozone destruction & ozone layer depletion.


Papers
More filters
Journal ArticleDOI
02 Oct 2009-Science
TL;DR: In this paper, the ozone depletion potential-weighted anthropogenic emissions of N2O with those of other ozone-depleting substances were compared, and it was shown that N 2O emission currently is the single most important ozone-destroying emission and is expected to remain the largest throughout the 21st century.
Abstract: By comparing the ozone depletion potential-weighted anthropogenic emissions of N2O with those of other ozone-depleting substances, we show that N2O emission currently is the single most important ozone-depleting emission and is expected to remain the largest throughout the 21st century. N2O is unregulated by the Montreal Protocol. Limiting future N2O emissions would enhance the recovery of the ozone layer from its depleted state and would also reduce the anthropogenic forcing of the climate system, representing a win-win for both ozone and climate.

3,363 citations

Journal ArticleDOI
01 May 1985-Nature
TL;DR: In this article, it was shown that the very low temperatures which prevail from midwinter until several weeks after the spring equinox make the Antarctic stratosphere uniquely sensitive to growth of inorganic chlorine, ClX, primarily by the effect of this growth on the NO2/NO ratio.
Abstract: Recent attempts1,2 to consolidate assessments of the effect of human activities on stratospheric ozone (O3) using one-dimensional models for 30° N have suggested that perturbations of total O3 will remain small for at least the next decade. Results from such models are often accepted by default as global estimates3. The inadequacy of this approach is here made evident by observations that the spring values of total O3 in Antarctica have now fallen considerably. The circulation in the lower stratosphere is apparently unchanged, and possible chemical causes must be considered. We suggest that the very low temperatures which prevail from midwinter until several weeks after the spring equinox make the Antarctic stratosphere uniquely sensitive to growth of inorganic chlorine, ClX, primarily by the effect of this growth on the NO2/NO ratio. This, with the height distribution of UV irradiation peculiar to the polar stratosphere, could account for the O3 losses observed.

3,131 citations

Journal ArticleDOI
TL;DR: This paper examined the sensitivity of a climate model to a wide range of radiative forcings, including changes of solar irradiance, atmospheric CO2, O3, CFCs, clouds, aerosols, surface albedo, and a "ghost" forcing introduced at arbitrary heights, latitudes, longitudes, seasons, and times of day.
Abstract: We examine the sensitivity of a climate model to a wide range of radiative forcings, including changes of solar irradiance, atmospheric CO2, O3, CFCs, clouds, aerosols, surface albedo, and a “ghost” forcing introduced at arbitrary heights, latitudes, longitudes, seasons, and times of day. We show that, in general, the climate response, specifically the global mean temperature change, is sensitive to the altitude, latitude, and nature of the forcing; that is, the response to a given forcing can vary by 50% or more depending upon characteristics of the forcing other than its magnitude measured in watts per square meter. The consistency of the response among different forcings is higher, within 20% or better, for most of the globally distributed forcings suspected of influencing global mean temperature in the past century, but exceptions occur for certain changes of ozone or absorbing aerosols, for which the climate response is less well behaved. In all cases the physical basis for the variations of the response can be understood. The principal mechanisms involve alterations of lapse rate and decrease (increase) of large-scale cloud cover in layers that are preferentially heated (cooled). Although the magnitude of these effects must be model-dependent, the existence and sense of the mechanisms appear to be reasonable. Overall, we reaffirm the value of the radiative forcing concept for predicting climate response and for comparative studies of different forcings; indeed, the present results can help improve the accuracy of such analyses and define error estimates. Our results also emphasize the need for measurements having the specificity and precision needed to define poorly known forcings such as absorbing aerosols and ozone change. Available data on aerosol single scatter albedo imply that anthropogenic aerosols cause less cooling than has commonly been assumed. However, negative forcing due to the net ozone change since 1979 appears to have counterbalanced 30–50% of the positive forcing due to the increase of well-mixed greenhouse gases in the same period. As the net ozone change includes halogen-driven ozone depletion with negative radiative forcing and a tropospheric ozone increase with positive radiative forcing, it is possible that the halogen-driven ozone depletion has counterbalanced more than half of the radiative forcing due to well-mixed greenhouse gases since 1979.

2,044 citations

Journal ArticleDOI
TL;DR: A brief history of the science of ozone depletion and a conceptual framework to explain the key processes involved, with a focus on chemistry is described in this article, and observations of ozone and of chlorine-related trace gases near 40 km provide evidence that gas phase chemistry has indeed currently depleted about 10% of the stratospheric ozone there as predicted, and the vertical and horizontal struc- tures of this depletion are fingerprints for that process.
Abstract: Stratospheric ozone depletion through cat- alytic chemistry involving man-made chlorofluorocar- bons is an area of focus in the study of geophysics and one of the global environmental issues of the twentieth century. This review presents a brief history of the sci- ence of ozone depletion and describes a conceptual framework to explain the key processes involved, with a focus on chemistry. Observations that may be considered as evidence (fingerprints) of ozone depletion due to chlorofluorocarbons are explored, and the related gas phase and surface chemistry is described. Observations of ozone and of chlorine-related trace gases near 40 km provide evidence that gas phase chemistry has indeed currently depleted about 10% of the stratospheric ozone there as predicted, and the vertical and horizontal struc- tures of this depletion are fingerprints for that process. More striking changes are observed each austral spring in Antarctica, where about half of the total ozone col- umn is depleted each September, forming the Antarctic ozone hole. Measurements of large amounts of ClO, a key ozone destruction catalyst, are among the finger- prints showing that human releases of chlorofluorocar- bons are the primary cause of this change. Enhanced ozone depletion in the Antarctic and Arctic regions is linked to heterogeneous chlorine chemistry that oc- curs on the surfaces of polar stratospheric clouds at cold temperatures. Observations also show that some of the same heterogeneous chemistry occurs on the surfaces of particles present at midlatitudes as well, and the abundances of these particles are enhanced following explosive volcanic eruptions. The partition- ing of chlorine between active forms that destroy ozone and inert reservoirs that sequester it is a central part of the framework for our understanding of the 40-km ozone decline, the Antarctic ozone hole, the recent Arctic ozone losses in particularly cold years, and the observation of record midlatitude ozone de- pletion after the major eruption of Mount Pinatubo in the early 1990s. As human use of chlorofluorocarbons continues to decrease, these changes throughout the ozone layer are expected to gradually reverse during the twenty-first century.

1,730 citations

Journal ArticleDOI
TL;DR: The Ozone Monitoring Instrument is a ultraviolet/visible nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial resolution of 13 km/spl times/24 km and will enable detection of air pollution on urban scale resolution.
Abstract: The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Administration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial resolution of 13 km/spl times/24 km. Trace gases measured include O/sub 3/, NO/sub 2/, SO/sub 2/, HCHO, BrO, and OClO. In addition, OMI will measure aerosol characteristics, cloud top heights, and UV irradiance at the surface. OMI's unique capabilities for measuring important trace gases with a small footprint and daily global coverage will be a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI's high spatial resolution is unprecedented and will enable detection of air pollution on urban scale resolution. In this paper, the instrument and its performance will be discussed.

1,644 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
88% related
Global warming
36.6K papers, 1.6M citations
85% related
Climate change
99.2K papers, 3.5M citations
82% related
Aerosol
33.8K papers, 1.1M citations
82% related
Sea surface temperature
21.2K papers, 874.7K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023157
2022194
202195
202083
201980
201865