scispace - formally typeset
Search or ask a question
Topic

p–n junction

About: p–n junction is a research topic. Over the lifetime, 7701 publications have been published within this topic receiving 108890 citations. The topic is also known as: p-n junction.


Papers
More filters
Patent
02 Feb 2005
TL;DR: In this article, a solid-state image pickup device with a pixel size that can be microminiaturized without lowering a saturated electric charge amount (Qs) and sensitivity is presented.
Abstract: A solid-state image pickup device 1 according to the present invention includes a semiconductor substrate 2 on which a pixel 20 composed of a photodiode 3 and a transistor is formed. The transistor comprising the pixel 20 is formed on the surface of the semiconductor substrate, a pn junction portion formed between high concentration regions of the photodiode 3 is provided within the semiconductor substrate 2 and a part of the pn junction portion of the photodiode 3 is extended to a lower portion of the transistor formed on the surface of the semiconductor substrate 2 . According to the present invention, there is provided a solid-state image pickup device in which a pixel size can be microminiaturized without lowering a saturated electric charge amount (Qs) and sensitivity.

66 citations

Journal ArticleDOI
TL;DR: In this article, the light emitting diode structures described here are grown on a GaAs substrate using a tetragonally distorted (In,Ga)As buffer layer to provide lattice matching between the substrate and the active II-VI region.
Abstract: The successful p doping of ZnSe by substitutional nitrogen using a plasma cell incorporated into the molecular beam epitaxy chamber has led to the development of electroluminescent devices based on carrier injection at a pn junction. The light emitting diode structures described here are grown on a GaAs substrate using a tetragonally distorted (In,Ga)As buffer layer to provide lattice matching between the substrate and the active II–VI region. The result of the incorporation of the buffer layer is an essentially dislocation‐free active region. The letter discusses optical properties as well as the x‐ray and transmission electron microscopy characterization of the quantum well device structures.

66 citations

Journal ArticleDOI
TL;DR: The long-term stability of the plasmonic photoelectric conversion device was found to be very high because a stable photocurrent was observed even after irradiation for 3 days, and was strongly correlated with the morphology of the TiO2/Au-NPs/NiO interface.
Abstract: We have successfully fabricated all-solid-state plasmonic photoelectric conversion devices composed of titanium dioxide (TiO2)/nickel oxide (NiO) p–n junctions with gold nanoparticles (Au-NPs) as prototype devices for a plasmonic solar cell. The characteristics of the crystal structures and the photoelectric properties of the all-solid-state devices were demonstrated. We observed that the crystalline structure of the NiO thin film and the interfacial structure of TiO2/Au-NPs/NiO changed significantly during an annealing treatment. Furthermore, the photoelectric conversion devices exhibited plasmon-induced photocurrent generation in the visible-wavelength region. The photocurrent may result from plasmon-induced charge separation. The photoelectric conversion properties via plasmon-induced charge separation were strongly correlated with the morphology of the TiO2/Au-NPs/NiO interface. The long-term stability of the plasmonic photoelectric conversion device was found to be very high because a stable photocur...

66 citations

Journal ArticleDOI
TL;DR: A Co3O4/g‐C3N4 p–n junction with excellent capacity is developed and its application in an all‐solid‐state flexible device is demonstrated, whose capacity and energy density are considerably enhanced by simulated solar light irradiation.
Abstract: Supercapacitors with the advantages of high power density and fast discharging rate have full applications in energy storage. However, the low energy density restricts their development. Conventional methods for improving energy density are mainly confined to doping atoms and hybridizing with other active materials. Herein, a Co3O4/g-C3N4 p-n junction with excellent capacity is developed and its application in an all-solid-state flexible device is demonstrated, whose capacity and energy density are considerably enhanced by simulated solar light irradiation. Under photoirradiation, the capacity is increased by 70.6% at the maximum current density of 26.6 mA cm-2 and a power density of 16.0 kW kg-1. The energy density is enhanced from 7.5 to 12.9 Wh kg-1 with photoirradiation. The maximum energy density reaches 16.4 Wh kg-1 at a power density of 6.4 kW kg-1. It is uncovered that the lattice distortion of Co3O4, reduces defects of g-C3N4, and the facilitated photo-generated charge separation by the Co3O4/g-C3N4 p-n junction all make contributions to the promoted electrochemical storage performance. This work may provide a new strategy to enhance the energy density of supercapacitors and expand the application range of photocatalytic materials.

66 citations

Journal ArticleDOI
TL;DR: A high quality p-n heterojunction diode composed of n-type inorganic Sb2S3 and p-type organic 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) with a rectification ratio of ∼102 at an applied bias of 1 V is reported.
Abstract: Organic–inorganic hybrid diodes are very promising for solution processing, low cost, high performance optoelectronic devices. Here, we report a high quality p–n heterojunction diode composed of n-type inorganic Sb2S3 and p-type organic 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) with a rectification ratio of ∼102 at an applied bias of 1 V. On illumination with visible light (470 nm, 1.82 mW/cm2), the current value in our device becomes 8 × 102 times that of its dark value even at a zero bias condition. The estimated responsivity value at zero bias is 0.087 A/W which is so far the highest reported for any organic–inorganic hybrid photodiode, to the best of our knowledge. It also exhibits a fast photoresponse time of <25 ms (instrumental limit). More importantly, our device can also detect visible light with power density as low as 8 μW/cm2 with a photocurrent density of 1.2 μA/cm2 and a photocurrent to dark current ratio of more than 8. We also demonstrate that the...

65 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
92% related
Thin film
275.5K papers, 4.5M citations
91% related
Band gap
86.8K papers, 2.2M citations
91% related
Photoluminescence
83.4K papers, 1.8M citations
90% related
Quantum dot
76.7K papers, 1.9M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202314
202237
2021116
2020166
2019251
2018203