scispace - formally typeset
Search or ask a question
Topic

Packet loss

About: Packet loss is a research topic. Over the lifetime, 21235 publications have been published within this topic receiving 302453 citations.


Papers
More filters
Proceedings ArticleDOI
14 Sep 2008
TL;DR: In this setting, the notion of interference cancellation for unmanaged networks - the ability for a single receiver to disambiguate and successfully receive simultaneous overlapping transmissions from multiple unsynchronized sources - is explored, and it is found that techniques can reduce packet loss rate and substantially increase spatial reuse.
Abstract: A fundamental problem with unmanaged wireless networks is high packet loss rates and poor spatial reuse, especially with bursty traffic typical of normal use. To address these limitations, we explore the notion of interference cancellation for unmanaged networks - the ability for a single receiver to disambiguate and successfully receive simultaneous overlapping transmissions from multiple unsynchronized sources. We describe a practical algorithm for interference cancellation, and implement it for ZigBee using software radios. In this setting, we find that our techniques can reduce packet loss rate and substantially increase spatial reuse. With carrier sense set to prevent concurrent sends, our approach reduces the packet loss rate during collisions from 14% to 8% due to improved handling of hidden terminals. Conversely, disabling carrier sense reduces performance for only 7% of all pairs of links and increases the delivery rate for the median pair of links in our testbed by a factor of 1.8 due to improved spatial reuse.

329 citations

Journal ArticleDOI
TL;DR: It is demonstrated that PCCP achieves efficient congestion control and flexible weighted fairness for both single-path and multi-path routing, as a result this leads to higher energy efficiency and better QoS in terms of both packet loss rate and delay.
Abstract: Congestion in wireless sensor networks not only causes packet loss, but also leads to excessive energy consumption. Therefore congestion in WSNs needs to be controlled in order to prolong system lifetime. In addition, this is also necessary to improve fairness and provide better quality of service (QoS), which is required by multimedia applications in wireless multimedia sensor networks. In this paper, we propose a novel upstream congestion control protocol for WSNs, called priority-based congestion control protocol (PCCP). Unlike existing work, PCCP innovatively measures congestion degree as the ratio of packet inter-arrival time along over packet service time. PCCP still introduced node priority index to reflect the importance of each sensor node. Based on the introduced congestion degree and node priority index, PCCP utilizes a cross-layer optimization and imposes a hop-by-hop approach to control congestion. We have demonstrated that PCCP achieves efficient congestion control and flexible weighted fairness for both single-path and multi-path routing, as a result this leads to higher energy efficiency and better QoS in terms of both packet loss rate and delay.

327 citations

Patent
22 Oct 1992
TL;DR: In this article, an address translation is performed to generate local source and destination addresses which are much shorter than the globally unique addresses contained in the packet as dictated by the protocol, and these local addresses are inserted in a header that is added to the packet.
Abstract: A packet data communication network employs a local switch, router or bridge device functioning to transfer packets between segments of a larger network. When packets enter this device, an address translation is performed to generate local source and destination addresses which are much shorter than the globally-unique addresses contained in the packet as dictated by the protocol. These local addresses are inserted in a header that is added to the packet, in addition to any header already contained in the packet. This added header travels with the packet through the local switch, router or bridge device, but then is stripped off before the packet is sent out onto another network segment. The added header may also contain other information, such as a local name for the source and destination segment (link), as well as status information that is locally useful, but not part of the packet protocol and not necessary for transmission with the packet throughout the network. Local congestion information, results of address translations, and end-of-message information, are examples of such status information.

323 citations

Journal ArticleDOI
TL;DR: This article is a tutorial on how RSVP can be used by end applications to ensure that they receive the end-to-end QoS that they require.
Abstract: The growing use of multimedia communication applications, with specific bandwidth and real-time delivery requirements has created the need for an integrated services Internet in which traditional best-effort datagram delivery can coexist with additional enhanced quality of service (QoS) delivery classes. Such classes provide data flows with QoS commitments with regard to bandwidth, packet loss, and delay through the reservation of network resources along the data path, which can be done using the Resource Reservation Protocol (RSVP). This article is a tutorial on how RSVP can be used by end applications to ensure that they receive the end-to-end QoS that they require.

322 citations

Proceedings ArticleDOI
31 Oct 2006
TL;DR: The funneling-MAC mitigates the funneling effect, improves throughput, loss, and energy efficiency, and importantly, significantly outperforms other representative protocols such as B-MAC, and more recent hybrid TDMA/CSMA MAC protocolssuch as Z-MAC.
Abstract: Sensor networks exhibit a unique funneling effect which is a product of the distinctive many-to-one, hop-by-hop traffic pattern found in sensor networks, and results in a significant increase in transit traffic intensity, collision, congestion, packet loss, and energy drain as events move closer toward the sink While network (eg, congestion control) and application techniques (eg, aggregation) can help counter this problem they cannot fully alleviate it We take a different but complementary approach to solving this problem than found in the literature and present the design, implementation, and evaluation of a localized, sink-oriented, funneling-MAC capable of mitigating the funneling effect and boosting application fidelity in sensor networks The funneling-MAC is based on a CSMA/CA being implemented network-wide, with a localized TDMA algorithm overlaid in the funneling region (ie, within a small number of hops from the sink) In this sense, the funneling-MAC represents a hybrid MAC approach but does not have the scalability problems associated with the network-wide deployment of TDMA The funneling-MAC is 'sink-oriented' because the burden of managing the TDMA scheduling of sensor events in the funneling region falls on the sink node, and not on resource limited sensor nodes; and it is 'localized' because TDMA only operates locally in the funneling region close to the sink and not across the complete sensor field We show through experimental results from a 45 mica-2 testbed that the funneling-MAC mitigates the funneling effect, improves throughput, loss, and energy efficiency, and importantly, significantly outperforms other representative protocols such as B-MAC, and more recent hybrid TDMA/CSMA MAC protocols such as Z-MAC

317 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
96% related
Wireless ad hoc network
49K papers, 1.1M citations
96% related
Wireless network
122.5K papers, 2.1M citations
95% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023133
2022325
2021694
2020846
20191,033
2018993