scispace - formally typeset
Search or ask a question
Topic

Packet loss

About: Packet loss is a research topic. Over the lifetime, 21235 publications have been published within this topic receiving 302453 citations.


Papers
More filters
Patent
09 Sep 2004
TL;DR: In this article, a method for optimizing the throughput of TCP/IP applications by aggregating user application data and consolidating multiple TCP and IP connection streams into a single optimized stream for delivery to a destination application is presented.
Abstract: A method for optimizing the throughput of TCP/IP applications by aggregating user application data and consolidating multiple TCP/IP connection streams into a single optimized stream for delivery to a destination application. Optimization of the internet protocol uses a packet interceptor to intercept packets from a source application, a packet driver to aggregate the intercepted packets, a data mover to transport the aggregated packets to another data mover at the destination, a destination packet driver to disaggregate the transported aggregated packets, and a destination end processor to deliver the disaggregated IP packets to the destination application.

119 citations

Journal ArticleDOI
TL;DR: This work proposes a packet delivery mechanism for URLLC and proposes a two-step method to find the optimal solution, and jointly optimize uplink and downlink bandwidth configuration and delay components to minimize the total bandwidth required to guarantee the overall packet loss and end-to-end delay.
Abstract: Supporting ultra-reliable and low-latency communications (URLLC) is one of the major goals for the fifth-generation cellular networks. Since spectrum usage efficiency is always a concern, and large bandwidth is required for ensuring stringent quality-of-service (QoS), we minimize the total bandwidth under the QoS constraints of URLLC. We first propose a packet delivery mechanism for URLLC. To reduce the required bandwidth for ensuring queueing delay, we consider a statistical multiplexing queueing mode, where the packets to be sent to different devices are waiting in one queue at the base station, and broadcast mode is adopted in downlink transmission. In this way, downlink bandwidth is shared among packets of multiple devices. In uplink transmission, orthogonal subchannels are allocated to different devices to avoid strong interference. Then, we jointly optimize uplink and downlink bandwidth configuration and delay components to minimize the total bandwidth required to guarantee the overall packet loss and end-to-end delay, which includes uplink and downlink transmission delays, queueing delay, and backhaul delay. We propose a two-step method to find the optimal solution. Simulation and numerical results validate our analysis and show remarkable performance gain by jointly optimizing uplink and downlink configuration.

119 citations

Patent
26 Oct 1994
TL;DR: In this paper, the decision to jam may include a determination of the packet's priority which may be determined based on the packet destination or source address, and the priority determination is based on packet's destination or address.
Abstract: An Ethernet network or other CSMA/CD network includes a hub that is modified to generate a jamming signal on a communication line when a packet received over that line is directed to an unavailable destination. The destination may be unavailable due to full transmit buffers, full receive buffers, or congestion in other parts of the hub architecture. Jamming is detected by the source node as a collision and causes retransmission of the packet from the source node. The decision to jam may include a determination of the packet's priority which may be determined based on the packet's destination or source address.

119 citations

Journal ArticleDOI
TL;DR: A WBAN-specific dynamic power control mechanism is developed that performs adaptive body posture inference for optimal power assignments and is experimentally evaluated and compared with a number of static and dynamic power assignment schemes.
Abstract: This article explores on-body energy management mechanisms in the context of emerging wireless body area networks. In severely resource-constrained systems such as WBANs, energy can usually be traded for packet delay, loss, and system throughput, whenever applicable. Using experimental results from a prototype wearable sensor network, the article first characterizes the dynamic nature of on-body links with varying body postures. A literature review follows to examine the relevant transmission power control mechanisms for ensuring a balance between energy consumption and packet loss on links between body-mounted sensors. Specific emphasis is put on approaches that are customized for TPC via tracking of postural node mobility. Then the article develops a WBAN-specific dynamic power control mechanism that performs adaptive body posture inference for optimal power assignments. Finally, performance of the mechanism is experimentally evaluated and compared with a number of static and dynamic power assignment schemes.

119 citations

01 Jan 2001
TL;DR: In this paper, the authors proposed a path diversity transmission system for video communication over lossy packet networks, where the system is composed of two subsystems: (1) multiple state video encoder/decoder and (2) a path-diversity transmission system.
Abstract: Video communication over lossy packet networks such as the Internet is hampered by limited bandwidth and packet loss. This paper presents a system for providing reliable video communication over these networks, where the system is composed of two subsystems: (1) multiple state video encoder/decoder and (2) a path diversity transmission system. Multiple state video coding combats the problem of error propagation at the decoder by coding the video into multiple independently decodable streams, each with its own prediction process and state. If one stream is lost the other streams can still be decoded to produce usable video, and furthermore, the correctly received streams provide bidirectional (previous and future) information that enables improved state recovery for the corrupted stream. This video coder is a form of multiple description coding (MDC), and its novelty lies in its use of information from the multiple streams to perform state recovery at the decoder. The path diversity transmission system explicitly sends different subsets of packets over different paths, as opposed to the default scenarios where the packets proceed along a single path, thereby enabling the end-to-end video application to effectively see an average path behavior. We refer to this as path diversity. Generally, seeing this average path behavior provides better performance than seeing the behavior of any individual random path. For example, the probability that all of the multiple paths are simultaneously congested is much less than the probability that a single path is congested. The resulting path diversity provides the multiple state video decoder with an appropriate virtual channel to assist in recovering from lost packets, and can also simplify system design, e.g. FEC design. We propose two architectures for achieving path diversity, and examine the effectiveness of path diversity in communicating video over a lossy packet network.

118 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
96% related
Wireless ad hoc network
49K papers, 1.1M citations
96% related
Wireless network
122.5K papers, 2.1M citations
95% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023133
2022325
2021694
2020846
20191,033
2018993