scispace - formally typeset
Search or ask a question
Topic

Pairwise comparison

About: Pairwise comparison is a research topic. Over the lifetime, 6804 publications have been published within this topic receiving 174081 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A pairwise approach is proposed that approximates the multi-dimensional operating characteristic by discounting some interactions, resulting in an algorithm that is tractable, and extensible to large numbers of classes.

82 citations

Proceedings ArticleDOI
03 Nov 2014
TL;DR: Experimental results are presented that demonstrate that both team draft multileave and optimized multileaved can accurately determine all pairwise preferences among a set of rankers using far less data than the interleaving methods that they extend.
Abstract: Evaluation methods for information retrieval systems come in three types: offline evaluation, using static data sets annotated for relevance by human judges; user studies, usually conducted in a lab-based setting; and online evaluation, using implicit signals such as clicks from actual users. For the latter, preferences between rankers are typically inferred from implicit signals via interleaved comparison methods, which combine a pair of rankings and display the result to the user. We propose a new approach to online evaluation called multileaved comparisons that is useful in the prevalent case where designers are interested in the relative performance of more than two rankers. Rather than combining only a pair of rankings, multileaved comparisons combine an arbitrary number of rankings. The resulting user clicks then give feedback about how all these rankings compare to each other. We propose two specific multileaved comparison methods. The first, called team draft multileave, is an extension of team draft interleave. The second, called optimized multileave, is an extension of optimized interleave and is designed to handle cases where a large number of rankers must be multileaved. We present experimental results that demonstrate that both team draft multileave and optimized multileave can accurately determine all pairwise preferences among a set of rankers using far less data than the interleaving methods that they extend.

82 citations

Journal ArticleDOI
TL;DR: A linearization technique is used that provides the closest consistent matrix to a given inconsistent matrix using orthogonal projection in a linear space and, as a result, consistency can be achieved in a closed form.

81 citations

Proceedings Article
12 Jun 2020
TL;DR: This paper introduces both evolutionary and gradient-based instantiations of DvD and shows they effectively improve exploration without reducing performance when better exploration is not required, and adapts the degree of diversity during training using online learning techniques.
Abstract: Exploration is a key problem in reinforcement learning, since agents can only learn from data they acquire in the environment. With that in mind, maintaining a population of agents is an attractive method, as it allows data be collected with a diverse set of behaviors. This behavioral diversity is often boosted via multi-objective loss functions. However, those approaches typically leverage mean field updates based on pairwise distances, which makes them susceptible to cycling behaviors and increased redundancy. In addition, explicitly boosting diversity often has a detrimental impact on optimizing already fruitful behaviors for rewards. As such, the reward-diversity trade off typically relies on heuristics. Finally, such methods require behavioral representations, often handcrafted and domain specific. In this paper, we introduce an approach to optimize all members of a population simultaneously. Rather than using pairwise distance, we measure the volume of the entire population in a behavioral manifold, defined by task-agnostic behavioral embeddings. In addition, our algorithm Diversity via Determinants (DvD), adapts the degree of diversity during training using online learning techniques. We introduce both evolutionary and gradient-based instantiations of DvD and show they effectively improve exploration without reducing performance when better exploration is not required.

81 citations

Proceedings Article
08 Dec 2014
TL;DR: It is shown that even if one applies the mismatched maximum likelihood estimator that assumes independence (on pairwise comparisons that are now dependent due to rank-breaking), minimax optimal performance is still achieved up to a logarithmic factor.
Abstract: This paper studies the problem of rank aggregation under the Plackett-Luce model. The goal is to infer a global ranking and related scores of the items, based on partial rankings provided by multiple users over multiple subsets of items. A question of particular interest is how to optimally assign items to users for ranking and how many item assignments are needed to achieve a target estimation error. Without any assumptions on how the items are assigned to users, we derive an oracle lower bound and the Cramer-Rao lower bound of the estimation error. We prove an upper bound on the estimation error achieved by the maximum likelihood estimator, and show that both the upper bound and the Cramer-Rao lower bound inversely depend on the spectral gap of the Laplacian of an appropriately defined comparison graph. Since random comparison graphs are known to have large spectral gaps, this suggests the use of random assignments when we have the control. Precisely, the matching oracle lower bound and the upper bound on the estimation error imply that the maximum likelihood estimator together with a random assignment is minimax-optimal up to a logarithmic factor. We further analyze a popular rank-breaking scheme that decompose partial rankings into pairwise comparisons. We show that even if one applies the mismatched maximum likelihood estimator that assumes independence (on pairwise comparisons that are now dependent due to rank-breaking), minimax optimal performance is still achieved up to a logarithmic factor.

81 citations


Network Information
Related Topics (5)
Markov chain
51.9K papers, 1.3M citations
81% related
Cluster analysis
146.5K papers, 2.9M citations
76% related
Deep learning
79.8K papers, 2.1M citations
75% related
Optimization problem
96.4K papers, 2.1M citations
74% related
Robustness (computer science)
94.7K papers, 1.6M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,305
20222,607
2021581
2020554
2019520