scispace - formally typeset
Search or ask a question
Topic

Pairwise comparison

About: Pairwise comparison is a research topic. Over the lifetime, 6804 publications have been published within this topic receiving 174081 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new approach to deriving crisp priorities from interval pairwise comparison judgements by introducing linear or non-linear membership functions, representing the decision-maker's degree of satisfaction with various crisp priority vectors, which is formulated as a fuzzy mathematical programming problem for obtaining an optimal crisp priority vector.

193 citations

Journal ArticleDOI
TL;DR: This review focuses on real-world problems and empirical results from applying freely available methods and tools for constructing large t-way combination test sets, converting covering arrays into executable tests, and automatically generating test oracles using model checking.
Abstract: With new algorithms and tools, developers can apply high-strength combinatorial testing to detect elusive failures that occur only when multiple components interact. In pairwise testing, all possible pairs of parameter values are covered by at least one test, and good tools are available to generate arrays with the value pairs. In the past few years, advances in covering-array algorithms, integrated with model checking or other testing approaches, have made it practical to extend combinatorial testing beyond pairwise tests. The US National Institute of Standards and Technology (NIST) and the University of Texas, Arlington, are now distributing freely available methods and tools for constructing large t-way combination test sets (known as covering arrays), converting covering arrays into executable tests, and automatically generating test oracles using model checking (http://csrc.nist.gov/acts). In this review, we focus on real-world problems and empirical results from applying these methods and tools.

191 citations

Proceedings ArticleDOI
14 Jun 2009
TL;DR: This work proposes to optimize a larger class of loss functions for ranking, based on an ordered weighted average (OWA) (Yager, 1988) of the classification losses, and shows that OWA aggregates of margin-based classification losses have good generalization properties.
Abstract: In ranking with the pairwise classification approach, the loss associated to a predicted ranked list is the mean of the pairwise classification losses. This loss is inadequate for tasks like information retrieval where we prefer ranked lists with high precision on the top of the list. We propose to optimize a larger class of loss functions for ranking, based on an ordered weighted average (OWA) (Yager, 1988) of the classification losses. Convex OWA aggregation operators range from the max to the mean depending on their weights, and can be used to focus on the top ranked elements as they give more weight to the largest losses. When aggregating hinge losses, the optimization problem is similar to the SVM for interdependent output spaces. Moreover, we show that OWA aggregates of margin-based classification losses have good generalization properties. Experiments on the Letor 3.0 benchmark dataset for information retrieval validate our approach.

190 citations

Proceedings Article
03 Dec 2012
TL;DR: This paper proposes a novel iterative rank aggregation algorithm for discovering scores for objects from pairwise comparisons which performs as well as the Maximum Likelihood Estimator of the BTL model and outperforms a recently proposed algorithm by Ammar and Shah.
Abstract: The question of aggregating pairwise comparisons to obtain a global ranking over a collection of objects has been of interest for a very long time: be it ranking of online gamers (e.g. MSR's TrueSkill system) and chess players, aggregating social opinions, or deciding which product to sell based on transactions. In most settings, in addition to obtaining ranking, finding 'scores' for each object (e.g. player's rating) is of interest to understanding the intensity of the preferences. In this paper, we propose a novel iterative rank aggregation algorithm for discovering scores for objects from pairwise comparisons. The algorithm has a natural random walk interpretation over the graph of objects with edges present between two objects if they are compared; the scores turn out to be the stationary probability of this random walk. The algorithm is model independent. To establish the efficacy of our method, however, we consider the popular Bradley-Terry-Luce (BTL) model in which each object has an associated score which determines the probabilistic outcomes of pairwise comparisons between objects. We bound the finite sample error rates between the scores assumed by the BTL model and those estimated by our algorithm. This, in essence, leads to order-optimal dependence on the number of samples required to learn the scores well by our algorithm. Indeed, the experimental evaluation shows that our (model independent) algorithm performs as well as the Maximum Likelihood Estimator of the BTL model and outperforms a recently proposed algorithm by Ammar and Shah [1].

189 citations

Journal ArticleDOI
TL;DR: The traditional AHP is modified to fuzzy AHP using fuzzy arithmetic operations and the concept of risk attitude and associated confidence of a decision maker on the estimates of pairwise comparisons are discussed.
Abstract: Environmental risk management is an integral part of risk analyses. The selection of different mitigating or preventive alternatives often involve competing and conflicting criteria, which requires sophisticated multi-criteria decision-making (MCDM) methods. Analytic hierarchy process (AHP) is one of the most commonly used MCDM methods, which integrates subjective and personal preferences in performing analyses. AHP works on a premise that decision-making of complex problems can be handled by structuring the complex problem into a simple and comprehensible hierarchical structure. However, AHP involves human subjectivity, which introduces vagueness type uncertainty and necessitates the use of decision-making under uncertainty. In this paper, vagueness type uncertainty is considered using fuzzy-based techniques. The traditional AHP is modified to fuzzy AHP using fuzzy arithmetic operations. The concept of risk attitude and associated confidence of a decision maker on the estimates of pairwise comparisons are also discussed. The methodology of the proposed technique is built on a hypothetical example and its efficacy is demonstrated through an application dealing with the selection of drilling fluid/mud for offshore oil and gas operations.

189 citations


Network Information
Related Topics (5)
Markov chain
51.9K papers, 1.3M citations
81% related
Cluster analysis
146.5K papers, 2.9M citations
76% related
Deep learning
79.8K papers, 2.1M citations
75% related
Optimization problem
96.4K papers, 2.1M citations
74% related
Robustness (computer science)
94.7K papers, 1.6M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,305
20222,607
2021581
2020554
2019520