scispace - formally typeset
Search or ask a question
Topic

Pancreatic cancer

About: Pancreatic cancer is a research topic. Over the lifetime, 34679 publications have been published within this topic receiving 1051594 citations. The topic is also known as: Ca tail of pancreas & Ca head of pancreas.


Papers
More filters
Book
05 May 2000

7,379 citations

Journal ArticleDOI
TL;DR: Antibody-mediated blockade of PD-L1 induced durable tumor regression and prolonged stabilization of disease in patients with advanced cancers, including non-small-cell lung cancer, melanoma, and renal-cell cancer.
Abstract: Background Programmed death 1 (PD-1) protein, a T-cell coinhibitory receptor, and one of its ligands, PD-L1, play a pivotal role in the ability of tumor cells to evade the host's immune system. Blockade of interactions between PD-1 and PD-L1 enhances immune function in vitro and mediates antitumor activity in preclinical models. Methods In this multicenter phase 1 trial, we administered intravenous anti–PD-L1 antibody (at escalating doses ranging from 0.3 to 10 mg per kilogram of body weight) to patients with selected advanced cancers. Anti–PD-L1 antibody was administered every 14 days in 6-week cycles for up to 16 cycles or until the patient had a complete response or confirmed disease progression. Results As of February 24, 2012, a total of 207 patients — 75 with non–small-cell lung cancer, 55 with melanoma, 18 with colorectal cancer, 17 with renal-cell cancer, 17 with ovarian cancer, 14 with pancreatic cancer, 7 with gastric cancer, and 4 with breast cancer — had received anti–PD-L1 antibody. The media...

6,812 citations

Journal ArticleDOI
26 Sep 2008-Science
TL;DR: It is found that pancreatic cancers contain an average of 63 genetic alterations, the majority of which are point mutations, which defined a core set of 12 cellular signaling pathways and processes that were each genetically altered in 67 to 100% of the tumors.
Abstract: There are currently few therapeutic options for patients with pancreatic cancer, and new insights into the pathogenesis of this lethal disease are urgently needed. Toward this end, we performed a comprehensive genetic analysis of 24 pancreatic cancers. We first determined the sequences of 23,219 transcripts, representing 20,661 protein-coding genes, in these samples. Then, we searched for homozygous deletions and amplifications in the tumor DNA by using microarrays containing probes for approximately 10(6) single-nucleotide polymorphisms. We found that pancreatic cancers contain an average of 63 genetic alterations, the majority of which are point mutations. These alterations defined a core set of 12 cellular signaling pathways and processes that were each genetically altered in 67 to 100% of the tumors. Analysis of these tumors' transcriptomes with next-generation sequencing-by-synthesis technologies provided independent evidence for the importance of these pathways and processes. Our data indicate that genetically altered core pathways and regulatory processes only become evident once the coding regions of the genome are analyzed in depth. Dysregulation of these core pathways and processes through mutation can explain the major features of pancreatic tumorigenesis.

3,721 citations

Journal ArticleDOI
TL;DR: To the authors' knowledge, this randomized phase III trial is the first to demonstrate statistically significantly improved survival in advanced pancreatic cancer by adding any agent to gemcitabine.
Abstract: Purpose Patients with advanced pancreatic cancer have a poor prognosis and there have been no improvements in survival since the introduction of gemcitabine in 1996. Pancreatic tumors often overexpress human epidermal growth factor receptor type 1 (HER1/EGFR) and this is associated with a worse prognosis. We studied the effects of adding the HER1/EGFR-targeted agent erlotinib to gemcitabine in patients with unresectable, locally advanced, or metastatic pancreatic cancer. Patients and Methods Patients were randomly assigned 1:1 to receive standard gemcitabine plus erlotinib (100 or 150 mg/d orally) or gemcitabine plus placebo in a double-blind, international phase III trial. The primary end point was overall survival. Results A total of 569 patients were randomly assigned. Overall survival based on an intent-to-treat analysis was significantly prolonged on the erlotinib/gemcitabine arm with a hazard ratio (HR) of 0.82 (95% CI, 0.69 to 0.99; P .038, adjusted for stratification factors; median 6.24 months v 5.91 months). One-year survival was also greater with erlotinib plus gemcitabine (23% v 17%; P .023). Progression-free survival was significantly longer with erlotinib plus gemcitabine with an estimated HR of 0.77 (95% CI, 0.64 to 0.92; P .004). Objective response rates were not significantly different between the arms, although more patients on erlotinib had disease stabilization. There was a higher incidence of some adverse events with erlotinib plus gemcitabine, but most were grade 1 or 2.

3,677 citations

Journal ArticleDOI
TL;DR: The ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types was evaluated and suggested that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes.
Abstract: The development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction-based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. In patients with localized tumors, ctDNA was detected in 73, 57, 48, and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. ctDNA was often present in patients without detectable circulating tumor cells, suggesting that these two biomarkers are distinct entities. In a separate panel of 206 patients with metastatic colorectal cancers, we showed that the sensitivity of ctDNA for detection of clinically relevant KRAS gene mutations was 87.2% and its specificity was 99.2%. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor blockade in 24 patients who objectively responded to therapy but subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase pathway. Together, these data suggest that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes in patients with multiple different types of cancer.

3,533 citations


Network Information
Related Topics (5)
Metastasis
103.6K papers, 3.4M citations
91% related
Cancer
339.6K papers, 10.9M citations
90% related
Cancer cell
93.4K papers, 3.5M citations
88% related
Carcinogenesis
60.3K papers, 3.1M citations
88% related
Breast cancer
214.3K papers, 6.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237,789
20225,301
20212,491
20202,463
20192,370
20182,018