scispace - formally typeset
Search or ask a question

Panel data

About: Panel data is a research topic. Over the lifetime, 28543 publications have been published within this topic receiving 775177 citations.

More filters
01 Jan 2001
TL;DR: This is the essential companion to Jeffrey Wooldridge's widely-used graduate text Econometric Analysis of Cross Section and Panel Data (MIT Press, 2001).
Abstract: The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.

28,298 citations

28 Apr 2021
TL;DR: In this article, the authors proposed a two-way error component regression model for estimating the likelihood of a particular item in a set of data points in a single-dimensional graph.
Abstract: Preface.1. Introduction.1.1 Panel Data: Some Examples.1.2 Why Should We Use Panel Data? Their Benefits and Limitations.Note.2. The One-way Error Component Regression Model.2.1 Introduction.2.2 The Fixed Effects Model.2.3 The Random Effects Model.2.4 Maximum Likelihood Estimation.2.5 Prediction.2.6 Examples.2.7 Selected Applications.2.8 Computational Note.Notes.Problems.3. The Two-way Error Component Regression Model.3.1 Introduction.3.2 The Fixed Effects Model.3.3 The Random Effects Model.3.4 Maximum Likelihood Estimation.3.5 Prediction.3.6 Examples.3.7 Selected Applications.Notes.Problems.4. Test of Hypotheses with Panel Data.4.1 Tests for Poolability of the Data.4.2 Tests for Individual and Time Effects.4.3 Hausman's Specification Test.4.4 Further Reading.Notes.Problems.5. Heteroskedasticity and Serial Correlation in the Error Component Model.5.1 Heteroskedasticity.5.2 Serial Correlation.Notes.Problems.6. Seemingly Unrelated Regressions with Error Components.6.1 The One-way Model.6.2 The Two-way Model.6.3 Applications and Extensions.Problems.7. Simultaneous Equations with Error Components.7.1 Single Equation Estimation.7.2 Empirical Example: Crime in North Carolina.7.3 System Estimation.7.4 The Hausman and Taylor Estimator.7.5 Empirical Example: Earnings Equation Using PSID Data.7.6 Extensions.Notes.Problems.8. Dynamic Panel Data Models.8.1 Introduction.8.2 The Arellano and Bond Estimator.8.3 The Arellano and Bover Estimator.8.4 The Ahn and Schmidt Moment Conditions.8.5 The Blundell and Bond System GMM Estimator.8.6 The Keane and Runkle Estimator.8.7 Further Developments.8.8 Empirical Example: Dynamic Demand for Cigarettes.8.9 Further Reading.Notes.Problems.9. Unbalanced Panel Data Models.9.1 Introduction.9.2 The Unbalanced One-way Error Component Model.9.3 Empirical Example: Hedonic Housing.9.4 The Unbalanced Two-way Error Component Model.9.5 Testing for Individual and Time Effects Using Unbalanced Panel Data.9.6 The Unbalanced Nested Error Component Model.Notes.Problems.10. Special Topics.10.1 Measurement Error and Panel Data.10.2 Rotating Panels.10.3 Pseudo-panels.10.4 Alternative Methods of Pooling Time Series of Cross-section Data.10.5 Spatial Panels.10.6 Short-run vs Long-run Estimates in Pooled Models.10.7 Heterogeneous Panels.Notes.Problems.11. Limited Dependent Variables and Panel Data.11.1 Fixed and Random Logit and Probit Models.11.2 Simulation Estimation of Limited Dependent Variable Models with Panel Data.11.3 Dynamic Panel Data Limited Dependent Variable Models.11.4 Selection Bias in Panel Data.11.5 Censored and Truncated Panel Data Models.11.6 Empirical Applications.11.7 Empirical Example: Nurses' Labor Supply.11.8 Further Reading.Notes.Problems.12. Nonstationary Panels.12.1 Introduction.12.2 Panel Unit Roots Tests Assuming Cross-sectional Independence.12.3 Panel Unit Roots Tests Allowing for Cross-sectional Dependence.12.4 Spurious Regression in Panel Data.12.5 Panel Cointegration Tests.12.6 Estimation and Inference in Panel Cointegration Models.12.7 Empirical Example: Purchasing Power Parity.12.8 Further Reading.Notes.Problems.References.Index.

10,363 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine the different methods used in the literature and explain when the different approaches yield the same (and correct) standard errors and when they diverge, and give researchers guidance for their use.
Abstract: In both corporate finance and asset pricing empirical work, researchers are often confronted with panel data. In these data sets, the residuals may be correlated across firms and across time, and OLS standard errors can be biased. Historically, the two literatures have used different solutions to this problem. Corporate finance has relied on clustered standard errors, while asset pricing has used the Fama-MacBeth procedure to estimate standard errors. This paper examines the different methods used in the literature and explains when the different methods yield the same (and correct) standard errors and when they diverge. The intent is to provide intuition as to why the different approaches sometimes give different answers and give researchers guidance for their use.

7,647 citations

25 Jul 1986
TL;DR: In this paper, the authors propose a homogeneity test for linear regression models (analysis of covariance) and show that linear regression with variable intercepts is more consistent than simple regression with simple intercepts.
Abstract: 1. Introduction 2. Homogeneity test for linear regression models (analysis of covariance) 3. Simple regression with variable intercepts 4. Dynamic models with variable intercepts 5. Simultaneous-equations models 6. Variable-coefficient models 7. Discrete data 8. Truncated and censored data 9. Cross-sectional dependent panel data 10. Dynamic system 11. Incomplete panel data 12. Miscellaneous topics 13. A summary view.

6,234 citations

Journal ArticleDOI
TL;DR: In this paper, a stochastic frontier production function is defined for panel data on firms, in which the nonnegative technical inefficiency effects are assumed to be a function of firm-specific variables and time.
Abstract: A stochastic frontier production function is defined for panel data on firms, in which the non-negative technical inefficiency effects are assumed to be a function of firm-specific variables and time. The inefficiency effects are assumed to be independently distributed as truncations of normal distributions with constant variance, but with means which are a linear function of observable variables. This panel data model is an extension of recently proposed models for inefficiency effects in stochastic frontiers for cross-sectional data. An empirical application of the model is obtained using up to ten years of data on paddy farmers from an Indian village. The null hypotheses, that the inefficiency effects are not stochastic or do not depend on the farmer-specific variables and time of observation, are rejected for these data.

5,783 citations

Network Information
Related Topics (5)
86.9K papers, 1.8M citations
91% related
Monetary policy
57.8K papers, 1.2M citations
91% related
60.4K papers, 1.3M citations
89% related
39.1K papers, 1.4M citations
89% related
47.9K papers, 1.2M citations
88% related
No. of papers in the topic in previous years