scispace - formally typeset
Search or ask a question

Showing papers on "Parametric Image published in 2018"


Journal ArticleDOI
TL;DR: A parametric image transformation function is utilized in this paper so that only the optimal parameters used in the transformation function need to be searched by the ABC algorithm, which outperforms conventional ABC-based image enhancement approaches.
Abstract: The objective of image contrast enhancement is to improve the contrast level of images, which are degraded during image acquisition. Image contrast enhancement is considered as an optimization problem in this paper and the artificial bee colony (ABC) algorithm is utilized to find the optimal solution for this optimization problem. The contribution of the proposed approach is two-fold. First, in view of that the fitness function is indispensable to evaluate the quality of the enhanced image, a new objective fitness function is proposed in this paper. Second, the image transformation function is critical to generate new pixel intensities for the enhanced image from the original input image; more importantly, it guides the searching movements of the artificial bees. For that, a parametric image transformation function is utilized in this paper so that only the optimal parameters used in the transformation function need to be searched by the ABC algorithm. This is in contrast to that the whole space of image intensity levels is used in the conventional ABC-based image enhancement approaches. Extensive experiments are conducted to demonstrate that the proposed approach outperforms conventional image contrast enhancement approaches to achieve both better visual image quality and higher objective performance measures.

91 citations


Journal ArticleDOI
TL;DR: The study indicates that parametric imaging of the relative Patlak slope can be used as a substitute of parametric Imaging of standard PatlAK slope for tasks that do not require absolute quantification, such as lesion detection and tumor volume segmentation.
Abstract: The Patlak graphical method is widely used in parametric imaging for modeling irreversible radiotracer kinetics in dynamic PET. The net influx rate of radiotracer can be determined from the slope of the Patlak plot. The implementation of the standard Patlak method requires the knowledge of full-time input function from the injection time until the scan end time, which presents a challenge for use in the clinic. This paper proposes a new relative Patlak plot method that does not require early-time input function and therefore can be more efficient for parametric imaging. Theoretical analysis proves that the effect of early-time input function is a constant scaling factor on the Patlak slope estimation. Thus, the parametric image of the slope of the relative Patlak plot is related to the parametric image of standard Patlak slope by a global scaling factor. This theoretical finding has been further demonstrated by computer simulation and real patient data. The study indicates that parametric imaging of the relative Patlak slope can be used as a substitute of parametric imaging of standard Patlak slope for tasks that do not require absolute quantification, such as lesion detection and tumor volume segmentation.

13 citations


Journal ArticleDOI
TL;DR: A simple iterative algorithm is derived, based on the Iterated Conditional Mode (ICM) framework, which exploits the simplicity of a two-step optimization and the efficiency of an analytic method for estimating kinetic parameters from a nonlinear compartmental model.
Abstract: We propose and test a novel approach for direct parametric image reconstruction of dynamic PET data. We present a theoretical description of the problem of PET direct parametric maps estimation as an inference problem, from a probabilistic point of view, and we derive a simple iterative algorithm, based on the Iterated Conditional Mode (ICM) framework, which exploits the simplicity of a two-step optimization and the efficiency of an analytic method for estimating kinetic parameters from a nonlinear compartmental model. The resulting method is general enough to be flexible to an arbitrary choice of the kinetic model, and unlike many other solutions, it is capable to deal with nonlinear compartmental models without the need for linearization. We tested its performance on a two-tissue compartment model, including an analytical solution to the kinetic parameters evaluation, based on an auxiliary parameter set, with the aim of reducing computation errors and approximations. The new method is tested on simulated and clinical data. Simulation analysis led to the conclusion that the proposed algorithm gives a good estimation of the kinetic parameters in any noise condition. Furthermore, the application of the proposed method to clinical data gave promising results for further studies.

6 citations


Posted ContentDOI
20 Feb 2018-bioRxiv
TL;DR: The study indicates that parametric imaging of the relative Patlak slope can be used as a substitute of parametric Imaging of standard PatlAK slope for certain clinical tasks such as lesion detection and tumor volume segmentation.
Abstract: The Patlak graphical method is widely used in parametric imaging for modeling irreversible radiotracer kinetics in dynamic PET. The net influx rate of radiotracer can be determined from the slope of the Patlak plot. The implementation of the standard Patlak method requires the knowledge of full-time input function from the injection time until the scan end time, which presents a challenge for use in the clinic. This paper proposes a new relative Patlak plot method that does not require early-time input function and therefore can be more efficient for parametric imaging. Theoretical analysis proves that the effect of early-time input function is a constant scaling factor on the Patlak slope estimation. Thus, the parametric image of the slope of the relative Patlak plot is related to the parametric image of standard Patlak slope by a global scaling factor. This theoretical finding has been further demonstrated by computer simulation and real patient data. The study indicates that parametric imaging of the relative Patlak slope can be used as a substitute of parametric imaging of standard Patlak slope for certain clinical tasks such as lesion detection and tumor volume segmentation.

2 citations


21 Jul 2018
TL;DR: An image reconstruction procedure based on l0 norm optimization is developed and applied over reduced number of measurements defined by randomly generated azimuth and range sensing matrices.
Abstract: In this work SAR/ISAR (Inverse Synthetic Aperture Radar/Inverse Synthetic Aperture Radar) parametric image reconstruction concepts are discussed. First, an image reconstruction procedure based on l0 norm optimization is developed and applied over reduced number of measurements defined by randomly generated azimuth and range sensing matrices. Second, Kalman algorithm is applied for ISAR image extraction. Vector measurement and state equations are derived. Approximation functions based on LFM signal are defined. Results of numerical experiments are presented.

1 citations


Patent
05 Jul 2018
TL;DR: In this paper, a color map is formed of the time-dependent data or the polarities of the data and displayed in a parametric image as a color overlay of a contrast image of the liver.
Abstract: An ultrasonic diagnostic imaging system and method acquire a sequence of image data as a bolus of contrast agent washes into and out of the liver. The image data of contrast intensity is used to compute time-intensity curves of contrast flow for points in an ultrasound image. Time-dependent data is calculated from the data of the time-intensity curves which, in a described implementation, comprise first and second derivatives of the time-intensity curves. A color map is formed of the time-dependent data or the polarities of the data and displayed in a parametric image as a color overlay of a contrast image of the liver.