scispace - formally typeset
Search or ask a question
Topic

Parametric oscillator

About: Parametric oscillator is a research topic. Over the lifetime, 5836 publications have been published within this topic receiving 95631 citations. The topic is also known as: Parametric excitation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an experimental and theoretical investigation of the coupling between a premixed laminar quasi-planar flame front and acoustic standing waves in tubes is presented, and the value of the acoustic field at the threshold of instability and the wavelength of the cellular structures are measured experimentally for propane flames and are found to be in good agreement with the calculated values.
Abstract: We present an experimental and theoretical investigation of some aspects of the coupling between a premixed laminar quasi-planar flame front and acoustic standing waves in tubes. A multidimensional instability of the front arises from its interaction with the oscillating field of acceleration. This instability can be described by the Clavin–Williams laminar wrinkled flame theory in which the periodic acceleration created by the acoustic field is added to the acceleration due to gravity. As first suggested by Markstein, the resulting equation can be reduced to the Mathieu equation for a parametric oscillator. A cellular instability appears with a finite excitation threshold. This instability is responsible for the spontaneous generation of intense acoustic oscillations observed elsewhere. The value of the acoustic field at the threshold of instability and the wavelength of the cellular structures are measured experimentally for propane flames and are found to be in good agreement with the calculated values. It is also seen, both experimentally and theoretically, that for certain amplitudes of pumping, the parametric mechanism can also stabilize an initially unstable system.

195 citations

Posted Content
TL;DR: In this paper, a superconducting parametric amplifier was proposed for the microwave frequency superconducted Josephson parametric amplifiers with high dynamic range and low nonlinearity, which can be applied to microwave, millimeter wave and sub-millimeter wave bands.
Abstract: Amplifiers are ubiquitous in electronics and play a fundamental role in a wide range of scientific measurements. From a user's perspective, an ideal amplifier has very low noise, operates over a broad frequency range, and has a high dynamic range - it is capable of handling strong signals with little distortion. Unfortunately, it is difficult to obtain all of these characteristics simultaneously. For example, modern transistor amplifiers offer multi-octave bandwidths and excellent dynamic range. However, their noise remains far above the fundamental limit set by the uncertainty principle of quantum mechanics. Parametric amplifiers, which predate transistor amplifiers and are widely used in optics, exploit a nonlinear response to transfer power from a strong pump tone to a weak signal. If the nonlinearity is purely reactive, ie. nondissipative, in theory the amplifier noise can reach the quantum-mechanical limit. Indeed, microwave frequency superconducting Josephson parametric amplifiers do approach the quantum limit, but generally are narrow band and have very limited dynamic range. In this paper, we describe a superconducting parametric amplifier that overcomes these limitations. The amplifier is very simple, consisting only of a patterned metal film on a dielectric substrate, and relies on the nonlinear kinetic inductance of a superconducting transmission line. We measure gain extending over 2 GHz on either side of an 11.56 GHz pump tone, and we place an upper limit on the added noise of the amplifier of 3.4 photons at 9.4 GHz. Furthermore, the dynamic range is very large, comparable to microwave transistor amplifiers, and the concept can be applied throughout the microwave, millimeter-wave and submillimeter-wave bands.

187 citations

Journal ArticleDOI
TL;DR: In this article, an oscillator which utilizes the effect of the vortex motion in long Josephson tunnel junctions, i.e., flux flow, has been presented in millimeter and submillimeter wave region.
Abstract: An oscillator which utilizes the effect of the vortex motion in long Josephson tunnel junctions, i.e., flux flow, has been presented in millimeter and submillimeter wave region. An electromagnetic wave generated by the oscillator is detected with a small tunnel junction as a detector with a refined coupling configuration. Quantitative evaluation of the detected power showed that the detected power attained the value of 10−6 W in the frequency range between 100 and 400 GHz, which is far superior to previous results. Frequency and magnetic field dependences of the present system were also measured, which showed that the output power was able to be controlled by the dc magnetic field. The present oscillator will be promising as the local oscillator in the integrated Josephson receiver systems.

186 citations

Journal ArticleDOI
TL;DR: In this article, a mass sensing concept based on parametric resonance amplification is proposed and experimentally investigated using a non-interdigitated comb-finger driven micro-oscillator, where mass change can be detected by measuring frequency shift at the boundary of the first order Parametric resonance ‘tongue’.
Abstract: A mass sensing concept based on parametric resonance amplification is proposed and experimentally investigated using a non-interdigitated comb-finger driven micro-oscillator. Mass change can be detected by measuring frequency shift at the boundary of the first order parametric resonance ‘tongue’. Both platinum deposition using focused ion beam (FIB) and water vapor desorption and absorption are used to change the mass of a prototype sensor. Due to the sharp transition in amplitude caused by parametric resonance, the sensitivity is 1–2 order of magnitude higher than the same oscillator working at Simple Harmonic Resonance (SHR) mode in air. Picogram (10 −12 g) level mass change can be easily detected in the sensor with mass about 30 ng and resonance frequency less than 100 kHz. Damping effects and noise processes on sensor dynamics and sensing performance are also investigated and damping has no significant effect on sensor noise floor and sensitivity. Higher sensitivity is expected when the oscillator design is optimized and dimensions are scaled.

186 citations

Journal ArticleDOI
TL;DR: An optical parametric chirped-pulse amplifier producing infrared 20 fs (3-optical-cycle) pulses with a stable carrier-envelope phase with well-suppressed background of parametric superfluorescence is demonstrated.
Abstract: We demonstrate an optical parametric chirped-pulse amplifier producing infrared 20 fs (3-optical-cycle) pulses with a stable carrier-envelope phase. The amplifier is seeded with self-phase-stabilized pulses obtained by optical rectification of the output of an ultrabroadband Ti:sapphire oscillator. Energies of -80 microJ with a well-suppressed background of parametric superfluorescence and up to 400 microJ with a superfluorescence background are obtained from a two-stage parametric amplifier based on periodically poled LiNbO3 and LiTaO3 crystals. The parametric amplifier is pumped by an optically synchronized 1 kHz, 30 ps, 1053 nm Nd:YLF amplifier seeded by the same Ti:sapphire oscillator.

182 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
84% related
Boundary value problem
145.3K papers, 2.7M citations
83% related
Scattering
152.3K papers, 3M citations
82% related
Optical fiber
167K papers, 1.8M citations
81% related
Excited state
102.2K papers, 2.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202366
2022133
2021123
2020139
2019145
2018135