scispace - formally typeset
Search or ask a question
Topic

Parametric statistics

About: Parametric statistics is a research topic. Over the lifetime, 39200 publications have been published within this topic receiving 765761 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, second harmonic generation and optical parametric amplification in negative-index metamaterials (NIMs) were studied, where the opposite directions of the wave vector and the Poynting vector in NIMs results in a "backward" phase-matching condition, causing significant changes in the Manley-Rowe relations and spatial distributions of the coupled field intensities.
Abstract: Second harmonic generation and optical parametric amplification in negative-index metamaterials (NIMs) are studied. The opposite directions of the wave vector and the Poynting vector in NIMs results in a "backward" phase-matching condition, causing significant changes in the Manley-Rowe relations and spatial distributions of the coupled field intensities. It is shown that absorption in NIMs can be compensated by backward optical parametric amplification. The possibility of distributed-feedback parametric oscillation with no cavity has been demonstrated. The feasibility of the generation of entangled pairs of left- and right-handed counter-propagating photons is discussed.

141 citations

Journal ArticleDOI
TL;DR: This paper compares the application of several methods for the identification of parametric models based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified.
Abstract: The dynamics describing the motion response of a marine structure in waves can be represented within a linear framework by the Cummins Equation. This equation contains a convolution term that represents the component of the radiation forces associated with fluid memory effects. Several methods have been proposed in the literature for the identification of parametric models to approximate and replace this convolution term. This replacement can facilitate the model implementation in simulators and the analysis of motion control designs. Some of the reported identification methods consider the problem in the time domain while other methods consider the problem in the frequency domain. This paper compares the application of these identification methods. The comparison is based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified. To illustrate the main points arising from the comparison, a particular example based on the coupled vertical motion of a modern containership vessel is presented.

141 citations

Journal ArticleDOI
TL;DR: In this paper, second harmonic generation and optical parametric amplification in negative-index metamaterials (NIMs) were studied, and the feasibility of the generation of entangled pairs of left and right-handed counter-propagating photons was discussed.
Abstract: Second harmonic generation and optical parametric amplification in negative-index metamaterials (NIMs) are studied. The opposite directions of the wave vector and the Poynting vector in NIMs results in a “backward” phase-matching condition, causing significant changes in the Manley–Rowe relations and spatial distributions of the coupled field intensities. It is shown that absorption in NIMs can be compensated by backward optical parametric amplification. The possibility of distributed-feedback parametric oscillation with no cavity has been demonstrated. The feasibility of the generation of entangled pairs of left- and right-handed counter-propagating photons is discussed.

141 citations

Journal ArticleDOI
TL;DR: This article revisited the analysis of family-wise error rates in statistical parametric mapping-using random field theory-reported in (Eklund et al. []: arXiv 1511.01863).
Abstract: This technical report revisits the analysis of family-wise error rates in statistical parametric mapping-using random field theory-reported in (Eklund et al. []: arXiv 1511.01863). Contrary to the understandable spin that these sorts of analyses attract, a review of their results suggests that they endorse the use of parametric assumptions-and random field theory-in the analysis of functional neuroimaging data. We briefly rehearse the advantages parametric analyses offer over nonparametric alternatives and then unpack the implications of (Eklund et al. []: arXiv 1511.01863) for parametric procedures. Hum Brain Mapp, 40:2052-2054, 2019. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

141 citations

Journal ArticleDOI
TL;DR: Simulation results show that picking stimuli by maximizing the mutual information can speed up convergence to the optimal values of the parameters by an order of magnitude compared to using random (nonadaptive) stimuli.
Abstract: Adaptively optimizing experiments has the potential to significantly reduce the number of trials needed to build parametric statistical models of neural systems. However, application of adaptive methods to neurophysiology has been limited by severe computational challenges. Since most neurons are high-dimensional systems, optimizing neurophysiology experiments requires computing high-dimensional integrations and optimizations in real time. Here we present a fast algorithm for choosing the most informative stimulus by maximizing the mutual information between the data and the unknown parameters of a generalized linear model (GLM) that we want to fit to the neuron's activity. We rely on important log concavity and asymptotic normality properties of the posterior to facilitate the required computations. Our algorithm requires only low-rank matrix manipulations and a two-dimensional search to choose the optimal stimulus. The average running time of these operations scales quadratically with the dimensionality of the GLM, making real-time adaptive experimental design feasible even for high-dimensional stimulus and parameter spaces. For example, we require roughly 10 milliseconds on a desktop computer to optimize a 100-dimensional stimulus. Despite using some approximations to make the algorithm efficient, our algorithm asymptotically decreases the uncertainty about the model parameters at a rate equal to the maximum rate predicted by an asymptotic analysis. Simulation results show that picking stimuli by maximizing the mutual information can speed up convergence to the optimal values of the parameters by an order of magnitude compared to using random (nonadaptive) stimuli. Finally, applying our design procedure to real neurophysiology experiments requires addressing the nonstationarities that we would expect to see in neural responses; our algorithm can efficiently handle both fast adaptation due to spike history effects and slow, nonsystematic drifts in a neuron's activity.

141 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
90% related
Matrix (mathematics)
105.5K papers, 1.9M citations
84% related
Artificial neural network
207K papers, 4.5M citations
83% related
Estimator
97.3K papers, 2.6M citations
83% related
Differential equation
88K papers, 2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20252
20242
20233,966
20227,822
20211,968
20202,033