scispace - formally typeset
Search or ask a question
Topic

Parametric statistics

About: Parametric statistics is a research topic. Over the lifetime, 39200 publications have been published within this topic receiving 765761 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The method is ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control.
Abstract: We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced basis approximations, Galerkin projection onto a space W(sub N) spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation, relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures, methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage, in which, given a new parameter value, we calculate the output of interest and associated error bound, depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control.

588 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: The Recurrent Marked Temporal Point Process is proposed to simultaneously model the event timings and the markers, and uses a recurrent neural network to automatically learn a representation of influences from the event history, and an efficient stochastic gradient algorithm is developed for learning the model parameters.
Abstract: Large volumes of event data are becoming increasingly available in a wide variety of applications, such as healthcare analytics, smart cities and social network analysis. The precise time interval or the exact distance between two events carries a great deal of information about the dynamics of the underlying systems. These characteristics make such data fundamentally different from independently and identically distributed data and time-series data where time and space are treated as indexes rather than random variables. Marked temporal point processes are the mathematical framework for modeling event data with covariates. However, typical point process models often make strong assumptions about the generative processes of the event data, which may or may not reflect the reality, and the specifically fixed parametric assumptions also have restricted the expressive power of the respective processes. Can we obtain a more expressive model of marked temporal point processes? How can we learn such a model from massive data? In this paper, we propose the Recurrent Marked Temporal Point Process (RMTPP) to simultaneously model the event timings and the markers. The key idea of our approach is to view the intensity function of a temporal point process as a nonlinear function of the history, and use a recurrent neural network to automatically learn a representation of influences from the event history. We develop an efficient stochastic gradient algorithm for learning the model parameters which can readily scale up to millions of events. Using both synthetic and real world datasets, we show that, in the case where the true models have parametric specifications, RMTPP can learn the dynamics of such models without the need to know the actual parametric forms; and in the case where the true models are unknown, RMTPP can also learn the dynamics and achieve better predictive performance than other parametric alternatives based on particular prior assumptions.

585 citations

Journal ArticleDOI
TL;DR: The Laplace type estimators (LTEs) as mentioned in this paper are a family of estimators that include means and quantiles of quasi-posterior distributions defined as transformations of general (nonlikelihood-based) statistical criterion functions, such as those in GMM, nonlinear IV, empirical likelihood, and minimum distance methods.

584 citations

Posted Content
TL;DR: In this article, the authors study the panel DOLS estimator of a homogeneous cointegration vector for a balanced panel of N individuals observed over T time periods and find that the estimator is fully parametric, computationally convenient, and more precise than the single equation estimator.
Abstract: We study the panel DOLS estimator of a homogeneous cointegration vector for a balanced panel of N individuals observed over T time periods. Allowable heterogeneity across individuals include individual-specific time trends, individual-specific fixed effects and time-specific effects. The estimator is fully parametric, computationally convenient, and more precise than the single equation estimator. For fixed N as T approaches infinity, the estimator converges to a function of Brownian motions and the Wald statistic for testing a set of linear constraints has a limiting chi-square distribution. The estimator also has a Gaussian sequential limit distribution that is obtained first by letting T go to infinity then letting N go to infinity. In a series of Monte Carlo experiments, we find that the asymptotic distribution theory provides a reasonably close approximation to the exact finite sample distribution. We use panel dynamic OLS to estimate coefficients of the long-run money demand function from a panel of 19 countries with annual observations that span from 1957 to 1996. The estimated income elasticity is 1.08 (asymptotic s.e.=0.26) and the estimated interest rate semi-elasticity is -0.02 (asymptotic s.e.=0.01).

582 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
90% related
Matrix (mathematics)
105.5K papers, 1.9M citations
84% related
Artificial neural network
207K papers, 4.5M citations
83% related
Estimator
97.3K papers, 2.6M citations
83% related
Differential equation
88K papers, 2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20252
20242
20233,966
20227,822
20211,968
20202,033