scispace - formally typeset
Search or ask a question
Topic

Parasitic drag

About: Parasitic drag is a research topic. Over the lifetime, 7971 publications have been published within this topic receiving 160405 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the relative motion correlations for dispersed two-phase flows of bubbles, drops, and particles were developed from simple similarity criteria and a mixture viscosity model, and satisfactory agreements were obtained at wide ranges of the particle concentration and Reynolds number.
Abstract: Drag coefficient and relative motion correlations for dispersed two-phase flows of bubbles, drops, and particles were developed from simple similarity criteria and a mixture viscosity model. The results are compared with a number of experimental data, and satisfactory agreements are obtained at wide ranges of the particle concentration and Reynolds number. Characteristics differences between fluid particle systems and solid particle systems at higher Reynolds numbers or at higher concentration regimes were successfully predicted by the model. Results showed that the drag law in various dispersed two-phase flows could be put on a general and unified base by the present method.

1,685 citations

Journal ArticleDOI
TL;DR: The experiments of McDonald and his co-workers have shown that in the larger arteries of the rabbit and the dog there is a reversal of the flow, and the simple mathematical treatment has strong similarities with the theory of the distribution of alternating current in a conductor of finite size.
Abstract: The experiments of McDonald and his co-workers (McDonald, 1952, 1955; Helps & McDonald, 1953) have shown that in the larger arteries of the rabbit and the dog there is a reversal of the flow. Measurements of the pressure gradient (Helps & McDonald, 1953) showed a phase-lag between pressure gradient and flow somewhat analogous with the phase-lag between voltage and current in a conductor carrying alternating current, and the simple mathematical treatment given below has strong similarities with the theory of the distribution of alternating current in a conductor of finite size.

1,675 citations

Journal ArticleDOI
TL;DR: In this paper, a simulation of the Navier-Stokes equations of a backward-facing step flow was performed at a Reynolds number of 5100 based on the step height h and inlet free-stream velocity.
Abstract: Turbulent flow over a backward-facing step is studied by direct numerical solution of the Navier–Stokes equations. The simulation was conducted at a Reynolds number of 5100 based on the step height h and inlet free-stream velocity, and an expansion ratio of 1.20. Temporal behaviour of spanwise-averaged pressure fluctuation contours and reattachment length show evidence of an approximate periodic behaviour of the free shear layer with a Strouhal number of 0.06. The instantaneous velocity fields indicate that the reattachment location varies in the spanwise direction, and oscillates about a mean value of 6.28h. Statistical results show excellent agreement with experimental data by Jovic & Driver (1994). Of interest are two observations not previously reported for the backward-facing step flow: (a) at the relatively low Reynolds number considered, large negative skin friction is seen in the recirculation region; the peak |Cf| is about 2.5 times the value measured in experiments at high Reynolds numbers; (b) the velocity profiles in the recovery region fall below the universal log-law. The deviation of the velocity profile from the log-law indicates that the turbulent boundary layer is not fully recovered at 20 step heights behind the separation.The budgets of all Reynolds stress components have been computed. The turbulent kinetic energy budget in the recirculation region is similar to that of a turbulent mixing layer. The turbulent transport term makes a significant contribution to the budget and the peak dissipation is about 60% of the peak production. The velocity–pressure gradient correlation and viscous diffusion are negligible in the shear layer, but both are significant in the near-wall region. This trend is seen throughout the recirculation and reattachment region. In the recovery region, the budgets show that effects of the free shear layer are still present.

1,076 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of dilute solutions of linear, random-coiling macromolecules in turbulent pipe flow is reviewed. And the experimental evidence is emphasized in three sections concerned with the graphical display of established features of the phenomenon, data correlation and analysis, and the physical mechanism of drag reduction.
Abstract: Drag reduction by dilute solutions of linear, random-coiling macromolecules in turbulent pipe flow is reviewed. The experimental evidence is emphasized in three sections concerned with the graphical display of established features of the phenomenon, data correlation and analysis, and the physical mechanism of drag reduction. This work has application to increased pipelines capacity, the study of wall turbulence and molecular rheology.

1,010 citations

Proceedings ArticleDOI
01 Feb 1984
TL;DR: In this paper, a basic ground vehicle type of bluff body, the time averaged wake structure is analyzed for low and high wake flow for the low drag and high drag configurations is described.
Abstract: For a basic ground vehicle type of bluff body, the time averaged wake structure is analysed. At a model length based reynolds number of 4.29 million, detailed pressure measurements, wake survey and force measurements were done in a wind tunnel. Some flow visualisation results were also obtained. Geometric parameter varied was base slant angle. A drag breakdown revealed that almost 85% of body drag is pressure drag. Most of this drag is generated at the rear end. Wake flow exhibits a triple deck system of horseshoe vortices. Strength, existence and merging of these vortices depend upon the base slant angle. Characteristic features of the wake flow for the low drag and high drag configurations is described. Relevance of these phenomena to real ground vehicle flow is addressed.

936 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
92% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Laminar flow
56K papers, 1.2M citations
87% related
Turbulence
112.1K papers, 2.7M citations
87% related
Heat transfer
181.7K papers, 2.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023119
2022259
2021128
2020133
2019134
2018145