Topic
Paris' law
About: Paris' law is a(n) research topic. Over the lifetime, 13815 publication(s) have been published within this topic receiving 224818 citation(s). The topic is also known as: Paris-Erdogan law.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
TL;DR: In this article, the cyclic deformation and fatigue crack initiation in polycrystalline ductile solids was studied and a total-life approach was proposed to deal with the problem.
Abstract: Preface 1. Introduction and overview Part I. Cyclic Deformation and Fatigue Crack Initiation: 2. Cyclic deformation in ductile single crystals 3. Cyclic deformation in polycrystalline ductile solids 4. Fatigue crack initiation in ductile solids 5. Cyclic deformation and crack initiation in brittle solids 6. Cyclic deformation and crack initiation in noncrystalline solids Part II. Total-Life Approaches: 7. Stress-life approach 8. Strain-life approach Part III. Damage-Tolerant Approach: 9. Fracture mechanics and its implications for fatigue 10. Fatigue crack growth in ductile solids 11. Fatigue crack growth in brittle solids 12. Fatigue crack growth in noncrystalline solids Part IV. Advanced Topics: 13. Contact fatigue: sliding, rolling and fretting 14. Retardation and transients in fatigue crack growth 15. Small fatigue cracks 16. Environmental interactions: corrosion-fatigue and creep-fatigue Appendix References Indexes.
4,074 citations
Book•
[...]
TL;DR: In this paper, the authors proposed a method to detect cracks in a crack-penetrization model, based on the Griffith criterion, which is used to detect the presence of a crack at a crack tip.
Abstract: I Principles.- 1 Summary of basic problems and concepts.- 1.1 Introduction.- 1.2 A crack in a structure.- 1.3 The stress at a crack tip.- 1.4 The Griffith criterion.- 1.5 The crack opening displacement criterion.- 1.6 Crack propagation.- 1.7 Closure.- 2 Mechanisms of fracture and crack growth.- 2.1 Introduction.- 2.2 Cleavage fracture.- 2.3 Ductile fracture.- 2.4 Fatigue cracking.- 2.5 Environment assisted cracking.- 2.6 Service failure analysis.- 3 The elastic crack-tip stress field.- 3.1 The Airy stress function.- 3.2 Complex stress functions.- 3.3 Solution to crack problems.- 3.4 The effect of finite size.- 3.5 Special cases.- 3.6 Elliptical cracks.- 3.7 Some useful expressions.- 4 The crack tip plastic zone.- 4.1 The Irwin plastic zone correction.- 4.2 The Dugdale approach.- 4.3 The shape of the plastic zone.- 4.4 Plane stress versus plane strain.- 4.5 Plastic constraint factor.- 4.6 The thickness effect.- 5 The energy principle.- 5.1 The energy release rate.- 5.2 The criterion for crack growth.- 5.3 The crack resistance (R curve).- 5.4 Compliance.- 5.5 The J integral.- 5.6 Tearing modulus.- 5.7 Stability.- 6 Dynamics and crack arrest.- 6.1 Crack speed and kinetic energy.- 6.2 The dynamic stress intensity and elastic energy release rate.- 6.3 Crack branching.- 6.4 The principles of crack arrest.- 6.5 Crack arrest in practice.- 6.6 Dynamic fracture toughness.- 7 Plane strain fracture toughness.- 7.1 The standard test.- 7.2 Size requirements.- 7.3 Non-linearity.- 7.4 Applicability.- 8 Plane stress and transitional behaviour.- 8.1 Introduction.- 8.2 An engineering concept of plane stress.- 8.3 The R curve concept.- 8.4 The thickness effect.- 8.5 Plane stress testing.- 8.6 Closure.- 9 Elastic-plastic fracture.- 9.1 Fracture beyond general yield.- 9.2 The crack tip opening displacement.- 9.3 The possible use of the CTOD criterion.- 9.4 Experimental determination of CTOd.- 9.5 Parameters affecting the critical CTOD.- 9.6 Limitations, fracture at general yield.- 9.7 Use of the J integral.- 9.8 Limitations of the J integral.- 9.9 Measurement of JIc and JR.- 9.10 Closure.- 10 Fatigue crack propagation.- 10.1 Introduction.- 10.2 Crack growth and the stress intensity factor.- 10.3 Factors affecting crack propagation.- 10.4 Variable amplitude service loading.- 10.5 Retardation models.- 10.6 Similitude.- 10.7 Small cracks.- 10.8 Closure.- 11 Fracture resistance of materials.- 11.1 Fracture criteria.- 11.2 Fatigue cracking criteria.- 11.3 The effect of alloying and second phase particles.- 11.4 Effect of processing, anisotropy.- 11.5 Effect of temperature.- 11.6 Closure.- II Applications.- 12 Fail-safety and damage tolerance.- 12.1 Introduction.- 12.2 Means to provide fail-safety.- 12.3 Required information for fracture mechanics approach.- 12.4 Closure.- 13 Determination of stress intensity factors.- 13.1 Introduction.- 13.2 Analytical and numerical methods.- 13.3 Finite element methods.- 13.4 Experimental methods.- 14 Practical problems.- 14.1 Introduction.- 14.2 Through cracks emanating from holes.- 14.3 Corner cracks at holes.- 14.4 Cracks approaching holes.- 14.5 Combined loading.- 14.6 Fatigue crack growth under mixed mode loading.- 14.7 Biaxial loading.- 14.8 Fracture toughness of weldments.- 14.9 Service failure analysis.- 15 Fracture of structures.- 15.1 Introduction.- 15.2 Pressure vessels and pipelines.- 15.3 "Leak-bcfore-break" criterion.- 15.4 Material selection.- 15.5 The use of the J integral for structural analysis.- 15.6 Collapse analysis.- 15.7 Accuracy of fracture calculations.- 16 Stiffened sheet structures.- 16.1 Introduction.- 16.2 Analysis.- 16.3 Fatigue crack propagation.- 16.4 Residual strength.- 16.5 The R curve and the residual strength of stiffened panels.- 16.6 Other analysis methods.- 16.7 Crack arrest.- 16.8 Closure.- 17 Prediction of fatigue crack growth.- 17.1 Introduction.- 17.2 The load spectrum.- 17.3 Approximation of the stress spectrum.- 17.4 Generation of a stress history.- 17.5 Crack growth integration.- 17.6 Accuracy of predictions.- 17.7 Safety factors.- Author index.
2,524 citations
Book•
[...]
01 Jan 1980
TL;DR: In this paper, the authors present methods proven successful in practice, such as safe-life, fail-safe, forecasting of service reliability, monitoring, and inspection; macroscopic and microscopic aspects of fatigue behavior; principles for determining fatigue crack growth and final fracture; scatter of data and statistical methods; environmental factors; and fatigue of joints and compounds.
Abstract: Presents methods proven successful in practice. Covers design procedures, such as safe-life, fail-safe, forecasting of service reliability, monitoring, and inspection; macroscopic and microscopic aspects of fatigue behavior; principles for determining fatigue crack growth and final fracture; scatter of data and statistical methods; environmental factors; and fatigue of joints and compounds. Contains design do's and don'ts and example problems.
1,788 citations
Book•
[...]
01 Jan 2001
TL;DR: In this paper, the authors introduce the concept of Fatigue as a Phenomenon in the material and present an overview of the properties of materials and their properties under variable-amplitude loading.
Abstract: Preface. Frequently used symbols, acronyms and units. 1. Introduction to Fatigue of Structures and Materials. Part 1: Introductory Chapters on Fatigue. 2. Fatigue as a Phenomenon in the Material. 3. Stress Concentrations at Notches. 4. Residual Stresses. 5. Stress Intensity Factors of Cracks. 6. Fatigue Properties of Materials. 7. The Fatigue Strength of Notched Specimens. Analysis and Predictions. 8. Fatigue Crack Growth. Analysis and Predictions. Part 2: Load Spectra and Fatigue Under Variable-Amplitude Loading. 9. Load Spectra. 10. Fatigue under Variable-Amplitude Loading. 11. Fatigue Crack Growth under Variable-Amplitude Loading. Part 3: Fatigue Tests and Scatter. 12. Fatigue and Scatter. 13. Fatigue Tests. Part 4: Special Fatigue Conditions. 14. Surface Treatments. 15. Fretting Corrosion. 16. Corrosion Fatigue. 17. High-Temperature and Low-Temperature Fatigue. Part 5: Fatigue of Joints and Structures. 18. Fatigue of Joints. 19. Fatigue of Structures. Design Procedures. Part 6: Arall and Glare, Fiber-Metal Laminates. 20. The Fatigue Resistance of the Fiber-Metal Laminates Arall and Glare. Subject index.
1,271 citations