scispace - formally typeset
Search or ask a question
Topic

Paris' law

About: Paris' law is a research topic. Over the lifetime, 13815 publications have been published within this topic receiving 224818 citations. The topic is also known as: Paris-Erdogan law.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the delamination fatigue crack growth behavior in carbon fiber (CF)/epoxy laminates with two kinds of interlayer/interleaf and found that the crack path shifted from the heterogeneous interlayer region (Stage I) to the inter-layer/base lamina interface (Stage II) with the increase of the crack length.

222 citations

Journal ArticleDOI
TL;DR: A built-in diagnostic technique for monitoring hidden fatigue crack growth in aircraft structures has been developed in part I of the study as mentioned in this paper, which uses diagnostics signals, generated from nearby piezoelectric actuators built into the structures, to detect crack growth.
Abstract: A built-in diagnostic technique for monitoring hidden fatigue crack growth in aircraft structures has been developed in part I of the study. The technique uses diagnostics signals, generated from nearby piezoelectric actuators built into the structures, to detect crack growth. In this second part of the study, the proposed diagnostic technique was applied to monitor fatigue crack growth in riveted fuselage joints and a cracked metallic plate repaired with a bonded composite patch. A complete built-in diagnostic system for the tests was developed, including a sensor network, hardware and the diagnostic software. Predictions were correlated quite well with measurements from the eddy current test and the ultrasonic scan methods as well as visual inspection. The damage index successfully detected both crack growth and debond damage for the structures considered.

221 citations

Book
01 Jan 1994
TL;DR: Theoretical models and numerical methods for fracture parameters calculation for fatigue crack propagation in metals have been proposed in this paper, where the three-dimensional boundary element method has been applied to quasistatic and fatigue cracks propagation.
Abstract: Volume 1. Introductory Section. Failure criteria for anisotropic bodies (P.S. Theocaris). Introduction to fracture mechanics of fatigue (H. Kitagawa). Numerical methods for fracture parameters calculation (G.J. Tsamasphyros). Fatigue Behaviour of Metallic Materials. Fatigue of steels for concrete reinforcement and cables (M. Elices et al). Fatigue crack growth and crack shielding in a Fe-C-Cu sintered steel (Y-W. Mai et al). Fatigue and fracture properties of aerospace aluminium alloys (R.J.H. Wanhill). Fatigue crack propagation in titanium alloys (J.K. Gregory). Theoretical Models and Numerical Methods. Mechanical model for fatigue crack propagation in metals (X.-L. Zheng). Application of the three-dimensional boundary element method to quasistatic and fatigue crack propagation (M.H. Aliabadi, Y. Mi). Method of damage mechanics for prediction of structure member fatigue lives (X. Zhang et al.). Stochastic fatigue crack propagation (J.H. Yoon, Y.S. Yang). A fracture mechanics approach to the optimum design of cracked structures under cyclic loading (Z. Knesl). Fundamental Aspects of Fatigue Crack Propagation Phenomenon. Stable and unstable fatigue crack propagation in metals (V.T. Troshchenko). Fatigue crack growth from stress concentrations and fatigue life prediction in notched components (C.S. Shin). Propagation of surface cracks under cyclic loading (A. Carpinteri). Growth behaviour of small fatigue cracks and relating problems (H. Nisitani et al). Analytical and experimental study of crack closure behaviour (D.-h. Chen). Studies of fatigue crack closure (D. Francois). Fatigue threshold of metallic materials - a review (A. Hadrboletz et al). Mechanics of fatigue crack growth as a synthesis of micro-and macro-mechanics of fracture (V.V. Bolotin). Random material non-homogeneity effects on fatigue crack growth (K. Dolinski). Volume 2. Influence of Loading Conditions. Fatigue crack growth under variable amplitude loading (J. Dominguez). Mixed mode fatigue crack propagation (L.P. Pook). Numerical and. experimental study of mixed mode fatigue crack propagation (A.S. Kobayashi, M. Ramulu). Crack growth behaviour under repeated impact load conditions (T. Tanaka et al). Influence of Environmental Conditions. Influence of ambient atmosphere on fatigue crack growth behaviour of metals (J. Petit et al). Influence of hydrogen-containing environments on fatigue crack extension resistance of metals (V.V Panasyuk et al.). Fatigue crack propagation in aqueous environments (Y. Nakai). Application of fatigue crack growth data to low cycle fatigue at high temperature (L. Remy). Creep-fatigue interaction under high-temperature conditions (R. Ohtani, T. Kitamura). Fatigue crack propagation in metals at low temperatures (X.-L. Zheng, B.-T. Lu). (Part contents).

221 citations

Journal ArticleDOI
TL;DR: The nucleation of fatigue cracks from corrosion pits was investigated by conducting fatigue experiments on open-hole specimens of a 2024-T3 aluminum alloy in 0.5 M NaCl solution at room temperature and different load frequencies from 0.1 to 20 Hz.
Abstract: The nucleation of fatigue cracks from corrosion pits was investigated by conducting fatigue experiments on open-hole specimens of a 2024-T3 aluminum (bare) alloy in 0.5 M NaCl solution at room temperature and different load frequencies from 0.1 to 20 Hz. The maximum cyclic stresses applied at the hole ranged from 144 to 288 MPa and the load ratio, R , was 0.1. A specimen subjected to pre-corrosion in the NaCl solution prior to corrosion fatigue was also investigated. Pitting was found to be associated with constituent particles in the hole and pit growth often involved coalescence of individual particle-nucleated pits. Fatigue cracks typically nucleated from one or two of the larger pits, and the size of the pit at which the fatigue crack nucleates is a function of stress level and load frequency. The observations indicate that the nucleation of corrosion fatigue cracks essentially results from a competition between the processes of pitting and crack growth. Pitting predominates in the early stage of the corrosion fatigue process, and is replaced by corrosion fatigue crack growth. Based on these results, two criteria are proposed to describe the transition from pit growth to fatigue crack growth: (1) the stress intensity factor of the equivalent surface crack has to reach the threshold stress intensity factor, Δ K th , for fatigue crack growth, assuming that a corrosion pit may be modeled by an equivalent semi-elliptical surface crack, and (2) the time-based corrosion fatigue crack growth rate also exceeds the pit growth rate.

220 citations

Journal ArticleDOI
TL;DR: The major evidence bearing upon sub-critical flaw growth in structural materials is reviewed and discussed in this paper, focusing on the growth of pre-existing flaws at operating stresses less than the net section yield strength, from both the separate and combined effects of fatigue and aggressive environments.

217 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
94% related
Ultimate tensile strength
129.2K papers, 2.1M citations
85% related
Alloy
171.8K papers, 1.7M citations
85% related
Microstructure
148.6K papers, 2.2M citations
84% related
Grain boundary
70.1K papers, 1.5M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022431
2021397
2020408
2019454
2018452