scispace - formally typeset
Search or ask a question
Topic

Partial discharge

About: Partial discharge is a research topic. Over the lifetime, 13997 publications have been published within this topic receiving 102058 citations. The topic is also known as: PD.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a micro dielectric barrier discharge plasma actuator (DBDPA) was used to control separated flows in the absence of external flow by means of many experimental techniques like discharge imaging, flow visualization, particle image velocimetry, infrared thermography, and electrical characterization.
Abstract: This paper reports a multitechnique investigation of a micro dielectric barrier discharge plasma actuator (DBDPA) as a promising system to control separated flows. The device was manufactured through a photolithographic technique and its performances and capabilities were compared with the ones of conventional macro DBDPAs. Alternate current operation under sinusoidal voltage excitation was studied in the absence of external flow by means of many experimental techniques like discharge imaging, flow visualizations, particle image velocimetry, infrared thermography, and electrical characterization. The influence of the operating parameters was investigated. The main results underlined that an increase in the voltage amplitude or frequency brought to a rise in the maximum induced velocity, electrical power dissipation, and actuator surface temperature. Moreover, it was assessed that the small heating of the micro DBDPA did not affect the actuated flow. A jet velocity up to 1.36 m/s was obtained at a 9.01 W/m electrical power dissipation per unit electrode length. The device realized by microelectronic fabrication technology allowed reaching a flow velocity magnitude comparable with the one of conventional macro DBDPAs, with a reduction in applied voltage, power dissipation, and actuator size. Furthermore, the induced wall jet was more confined in the area in proximity of the device, because of the limited plasma discharge extension.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed further knowledge in PD signal propagation in power cables and attenuation by the PD monitoring system devices to address the localization and criticality issues, which can be useful to PD denoising and for development of a PD localization technique.
Abstract: Partial discharge (PD) based condition monitoring has been widely applied to power cables. However, difficulties in interpretation of measurement results (location and criticality) remain to be tackled. This paper aims to develop further knowledge in PD signal propagation in power cables and attenuation by the PD monitoring system devices to address the localization and criticality issues. As on-line or in-service PD monitoring sensors commonly comprise of a high frequency current transformer (HFCT) and a high-pass filter, the characteristics of detected PD pulses depend on the attenuation of the cable, the HFCT used and the filter applied. Simulation of pulse propagation in a cable and PD monitoring system are performed, based on analyses in the frequency domain using the concept of transfer functions. Results have been verified by laboratory experiments and using on-site PD measurements. The knowledge gained from the research on the change in pulse characteristics propagating in a cable and through a PD detection system can be very useful to PD denoising and for development of a PD localization technique.

34 citations

Dissertation
10 Nov 2011
TL;DR: In this article, the dielectric properties of transformer liquids in uniform and divergent electric fields were investigated using breakdown voltage tests, and the breakdown voltages of transformer liquid were also determined in the divergent field at various gaps.
Abstract: Mineral oil has been widely used in liquid insulation of power transformers. However, it is poorly biodegradable and could cause serious contamination to the environment if a spill occurs. With increasingly strict environmental rules and regulations, there is considerable interest from the Utilities to apply esters in power transformers as substitutions to mineral oil. In order to use esters in large power transformers, their dielectric properties should be thoroughly investigated. This PhD thesis covers the experimental studies on the dielectric properties of a type of synthetic ester (Midel 7131) and a type of natural ester (FR3) in both uniform and divergent electric fields, using a mineral oil (Gemini X) as the benchmark.The dielectric properties of transformer liquids in uniform fields were investigated using breakdown voltage tests. The breakdown voltages of esters should be at least similar to that of mineral oil to allow a replacement in transformers. To obtain a fair comparison, the AC breakdown voltages of well-processed transformer liquids were tested, and their distributions were statistically analyzed. Since the breakdowns of transformer liquids in uniform fields are caused by the weakest-links, conditions representative of in-service transformer liquids were also considered by testing the effects of extraneous factors, such as particles, water and electrode area.The divergent fields were produced by sharp needle electrodes with tip curvatures of a few micrometers. The dielectric properties of transformer liquids in such fields were studied using several methods. A traditional PD detector was used to study the partial discharge characteristics of insulating liquids, such as the inception voltages and the repetition rates. A high speed camera was utilized to identify the streamer generation, propagation and breakdown phenomena. An oscilloscope was used to investigate the current signals associated with these phenomena. The breakdown voltages of transformer liquids were also determined in the divergent field at various gaps. Furthermore, the fault gases in transformer liquids under partial discharge faults were determined and analyzed.The following findings and conclusions can be made from the research in this thesis:* The AC dielectric strengths of esters in uniform fields are similar to that of mineral oil when they are in a well-processed condition. When practical liquid conditions are considered, the AC dielectric strengths of esters are higher than that of mineral oil.* The partial discharge behaviours at overstressed voltages can be used to differentiate various transformer liquids. Esters are relatively inferior to mineral oil in terms of higher discharge amplitude, higher discharge repetition rate and more negative partial discharges.* Mineral oil possesses a higher ability to suppress the propagation of negative streamers. Thus, the AC dielectric strength of mineral oil in the divergent field is relatively higher than those of esters.* Esters generate the same types of fault gases due to electrical discharge as mineral oil, but in relatively larger amounts.

34 citations

Proceedings ArticleDOI
02 Apr 2000
TL;DR: In this paper, the authors performed a statistical analysis of about 19,000 test results in their database, and found that the type of measuring system, the rated voltage of the stator, as well as if the machine is air or high-pressure gas cooled, has a significant impact on what partial discharge readings may be considered high.
Abstract: On-line partial discharge (PD) testing has been used for over 50 years to assess the condition of motor and generator stator winding insulation systems. In the past decade, advanced hardware and software have enabled superior methods of converting the PD data into practical information about the relative condition of the insulation, as well as determining the root causes of any insulation deterioration. This helps machine owners plan appropriate maintenance. By performing a statistical analysis of about 19,000 test results in our database, it is clear the type of measuring system, the rated voltage of the stator, as well as if the machine is air or high-pressure gas cooled, has a significant impact on what PD readings may be considered high. Tables are presented which allow, through gross comparisons to similar machines, for a single measurement on a stator to be classed as having high or low PD, In addition, a case study is presented which shows new methods to identify phase-to-phase insulation problems.

33 citations

Journal ArticleDOI
TL;DR: In this article, an adaptive digital filtering technique based on Wiener optimal filtering is proposed for detecting partial discharges in HV insulation in the presence of sinusoidal noise signals.
Abstract: The insulation system of HV apparatus deteriorates due to partial discharges (PD). PD tests are carried out successfully in shielded laboratories to verify the insulation quality and to rectify defects left during the manufacturing process. A variety of techniques exists for this purpose. It is also desired to monitor the insulation when equipment is in operation. Unfortunately, the performance of PD test equipment is adversely affected by interference signals. The sinusoidal signals of low and high frequency, due to their correlation, make the measurement difficult and sometimes even impossible. This paper describes the design of an adaptive digital filtering technique and its successful application to the on-line/on-site detection of PD current pulses generated in HV insulation in the presence of sinusoidal noise signals. The technique is based on Wiener optimal filtering theory and its characteristics are investigated. The adaptive filter of this system has a time-varying response and is self-tuning to each low and high frequency noise component. The filter remains active until the signal-to-noise ratio is significantly increased and it can be used for weak PD pulse integration. Theoretical background of the technique and the results of laboratory and field tests are presented. >

33 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
84% related
Capacitor
166.6K papers, 1.4M citations
81% related
Electric power system
133K papers, 1.7M citations
80% related
AC power
80.9K papers, 880.8K citations
78% related
Fault (power engineering)
119.7K papers, 981.6K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023306
2022780
2021376
2020677
2019835
2018860