scispace - formally typeset

Topic

Particle filter

About: Particle filter is a(n) research topic. Over the lifetime, 15004 publication(s) have been published within this topic receiving 322365 citation(s).
Papers
More filters

Journal ArticleDOI
TL;DR: Both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters are reviewed.
Abstract: Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or "particle") representations of probability densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.

10,977 citations


BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,458 citations


Journal ArticleDOI
TL;DR: An overview of methods for sequential simulation from posterior distributions for discrete time dynamic models that are typically nonlinear and non-Gaussian, and how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literature are shown.
Abstract: In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed. We show in particular how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literatures these lead to very effective importance distributions. Furthermore we describe a method which uses Rao-Blackwellisation in order to take advantage of the analytic structure present in some important classes of state-space models. In a final section we develop algorithms for prediction, smoothing and evaluation of the likelihood in dynamic models.

4,591 citations


Book
31 Jan 2004
TL;DR: Part I Theoretical concepts: introduction suboptimal nonlinear filters a tutorial on particle filters Cramer-Rao bounds for nonlinear filtering and tracking applications: tracking a ballistic object bearings-only tracking range- only tracking bistatic radar tracking targets through blind Doppler terrain aided tracking detection and tracking of stealthy targets group and extended object tracking.
Abstract: Part I Theoretical concepts: introduction suboptimal nonlinear filters a tutorial on particle filters Cramer-Rao bounds for nonlinear filtering Part II Tracking applications: tracking a ballistic object bearings-only tracking range-only tracking bistatic radar tracking tracking targets through blind Doppler terrain aided tracking detection and tracking of stealthy targets group and extended object tracking

3,592 citations


Journal ArticleDOI
Michael K. Pitt1, Neil Shephard2Institutions (2)
TL;DR: This article analyses the recently suggested particle approach to filtering time series and suggests that the algorithm is not robust to outliers for two reasons: the design of the simulators and the use of the discrete support to represent the sequentially updating prior distribution.
Abstract: This article analyses the recently suggested particle approach to filtering time series. We suggest that the algorithm is not robust to outliers for two reasons: the design of the simulators and the use of the discrete support to represent the sequentially updating prior distribution. Here we tackle the first of these problems.

2,500 citations


Network Information
Related Topics (5)
Feature extraction

111.8K papers, 2.1M citations

90% related
Artificial neural network

207K papers, 4.5M citations

87% related
Wireless sensor network

142K papers, 2.4M citations

86% related
Deep learning

79.8K papers, 2.1M citations

86% related
Control theory

299.6K papers, 3.1M citations

86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021489
2020626
2019780
2018837
2017888