scispace - formally typeset
Search or ask a question
Topic

Particle filter

About: Particle filter is a research topic. Over the lifetime, 15004 publications have been published within this topic receiving 322365 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown here how it is possible to build efficient high dimensional proposal distributions by using sequential Monte Carlo methods, which allows not only to improve over standard Markov chain Monte Carlo schemes but also to make Bayesian inference feasible for a large class of statistical models where this was not previously so.
Abstract: Summary. Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions. Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is unreliable when the proposal distributions that are used to explore the space are poorly chosen and/or if highly correlated variables are updated independently. We show here how it is possible to build efficient high dimensional proposal distributions by using sequential Monte Carlo methods. This allows us not only to improve over standard Markov chain Monte Carlo schemes but also to make Bayesian inference feasible for a large class of statistical models where this was not previously so. We demonstrate these algorithms on a non-linear state space model and a Levy-driven stochastic volatility model.

1,869 citations

Book Chapter
01 Jan 2008
TL;DR: A complete, up-to-date survey of particle filtering methods as of 2008, including basic and advanced particle methods for filtering as well as smoothing.
Abstract: Optimal estimation problems for non-linear non-Gaussian state-space models do not typically admit analytic solutions. Since their introduction in 1993, particle filtering methods have become a very popular class of algorithms to solve these estimation problems numerically in an online manner, i.e. recursively as observations become available, and are now routinely used in fields as diverse as computer vision, econometrics, robotics and navigation. The objective of this tutorial is to provide a complete, up-to-date survey of this field as of 2008. Basic and advanced particle methods for filtering as well as smoothing are presented.

1,860 citations

Journal ArticleDOI
TL;DR: The technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map and it is shown that the accuracy is comparable with satellite navigation but with higher integrity.
Abstract: A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.

1,787 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a methodology to sample sequentially from a sequence of probability distributions that are defined on a common space, each distribution being known up to a normalizing constant.
Abstract: Summary. We propose a methodology to sample sequentially from a sequence of probability distributions that are defined on a common space, each distribution being known up to a normalizing constant. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time by using sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make parallel Markov chain Monte Carlo algorithms interact to perform global optimization and sequential Bayesian estimation and to compute ratios of normalizing constants. We illustrate these algorithms for various integration tasks arising in the context of Bayesian inference.

1,684 citations

Proceedings Article
01 Jan 2000
TL;DR: This paper proposes a new particle filter based on sequential importance sampling that outperforms standard particle filtering and other nonlinear filtering methods very substantially and is in agreement with the theoretical convergence proof for the algorithm.
Abstract: In this paper, we propose a new particle filter based on sequential importance sampling. The algorithm uses a bank of unscented filters to obtain the importance proposal distribution. This proposal has two very "nice" properties. Firstly, it makes efficient use of the latest available information and, secondly, it can have heavy tails. As a result, we find that the algorithm outperforms standard particle filtering and other nonlinear filtering methods very substantially. This experimental finding is in agreement with the theoretical convergence proof for the algorithm. The algorithm also includes resampling and (possibly) Markov chain Monte Carlo (MCMC) steps.

1,681 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
90% related
Artificial neural network
207K papers, 4.5M citations
87% related
Wireless sensor network
142K papers, 2.4M citations
86% related
Deep learning
79.8K papers, 2.1M citations
86% related
Control theory
299.6K papers, 3.1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023277
2022648
2021497
2020630
2019780
2018838