scispace - formally typeset
Search or ask a question

Showing papers on "Particle published in 2008"


Journal ArticleDOI
TL;DR: In this article, the effects of particle size, particle/matrix interface adhesion and particle loading on the stiffness, strength and toughness of such particulate polymer composites are reviewed.
Abstract: There have been a number of review papers on layered silicate and carbon nanotube reinforced polymer nanocomposites, in which the fillers have high aspect ratios. Particulate–polymer nanocomposites containing fillers with small aspect ratios are also an important class of polymer composites. However, they have been apparently overlooked. Thus, in this paper, detailed discussions on the effects of particle size, particle/matrix interface adhesion and particle loading on the stiffness, strength and toughness of such particulate–polymer composites are reviewed. To develop high performance particulate composites, it is necessary to have some basic understanding of the stiffening, strengthening and toughening mechanisms of these composites. A critical evaluation of published experimental results in comparison with theoretical models is given.

2,767 citations


Journal ArticleDOI
TL;DR: These findings suggest that HeLa cells readily internalize nonspherical particles with dimensions as large as 3 μm by using several different mechanisms of endocytosis, and it was found that rod-like particles enjoy an appreciable advantage when it comes to internalization rates.
Abstract: The interaction of particles with cells is known to be strongly influenced by particle size, but little is known about the interdependent role that size, shape, and surface chemistry have on cellular internalization and intracellular trafficking. We report on the internalization of specially designed, monodisperse hydrogel particles into HeLa cells as a function of size, shape, and surface charge. We employ a top-down particle fabrication technique called PRINT that is able to generate uniform populations of organic micro- and nanoparticles with complete control of size, shape, and surface chemistry. Evidence of particle internalization was obtained by using conventional biological techniques and transmission electron microscopy. These findings suggest that HeLa cells readily internalize nonspherical particles with dimensions as large as 3 μm by using several different mechanisms of endocytosis. Moreover, it was found that rod-like particles enjoy an appreciable advantage when it comes to internalization rates, reminiscent of the advantage that many rod-like bacteria have for internalization in nonphagocytic cells.

2,617 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the role of chemical composition and particle size in cloud condensation nucleation processes, and the role that the chemical composition plays in the process of cloud droplet and ice nucleation.

1,347 citations


Journal ArticleDOI
TL;DR: A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles.
Abstract: This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts.

1,347 citations


Journal ArticleDOI
TL;DR: It is demonstrated that many metal and metal oxide nanomaterials agglomerate in solution and that depending upon the solution particleagglomeration is either agitated or mitigated.

967 citations


Journal ArticleDOI
TL;DR: Much research in emulsions can be applied to foam systems, however evidence would suggest foam systems are under a number of additional constraints, and the stability 'window' for particles is smaller, in terms of size and contact angle ranges.

898 citations


Journal ArticleDOI
TL;DR: A versatile synthetic method for the formation of 3D porous bulk Si particles by the thermal annealing and etching of physical composites obtained from butyl-capped Si gels and SiO2 nanoparticles at 900 8C under an Ar atmosphere is reported.
Abstract: Silicon has been investigated for use as a next-generation, high-capacity anode material as its theoretical lithium capacity of approximately 4140 mAhg 1 (ca. Li4.4Si) is eleven times higher than the capacity of graphite (ca. 372 mAhg ), which is currently used as an anode material. In spite of the high capacity of silicon, severe particle pulverization can be triggered by a large volume change (> 300%) during lithium alloying (to form LixSi) and de-alloying (to reform Si), which results in electrically disconnected smaller particles. These disconnected particles cause a rapid decrease in cycling stability. Intense studies have focused on reducing this volume change by using composites with an inactive carbon phase to prevent the aggregation of particle growth and to act as electrically connecting media between anode particles and the current collector when the particle is pulverized. However, these methods lead to a decrease in the charge capacity to less than 1500 mAhg 1 after dozens of cycles. On the other hand, control of the volume change by control of the morphology of the Si has very rarely been reported. Chan et al. have reported Si nanowires that showed a reversible capacity of approximately 2900 mAhg 1 at a rate of 0.05 C, which were grown on a metallic current collector. However, the capacity retention at a 2 C rate was less than 50% of the initial capacity. Ma et al. reported a first-charge capacity of 3952 mAhg 1 for nestlike Si particles, but the capacity retention of the particles was 36% between 1.6 V and 0.02 V at a rate of 0.5 C after 50 cycles. Recently, Liu and co-workers demonstrated that 3Dmetal foam structures of Cu and Sn fabricated by using an electrochemical deposition process exhibited not only fast transport of lithium ions through the electrolyte and the electrode, but also rapid electrochemical reactions, which resulted in a high performance anode with a superior rate capability. For instance, a Cu6Sn5 alloy showed a 45% capacity retention at a 20 C cycling rate, but, because of a very thick pore wall (> 100 mm), capacity fade was pronounced after 40 cycles. To date, there have been no reports of the synthesis of 3D porous Si particles, with the exception of those from the magnesiothermic reduction method. Using this method, threedimensional silica microassemblies were formed into microporous silicon replicas in a sealed steel ampoule at 650 8C by the following reaction: 2Mg + SiO2 (s)!2MgO (s) + Si (s). Herein, we report a versatile synthetic method for the formation of 3D porous bulk Si particles by the thermal annealing and etching of physical composites obtained from butyl-capped Si gels and SiO2 nanoparticles at 900 8C under an Ar atmosphere. Complete etching of the SiO2 from the SiO2/carbon-coated Si (c-Si) composite results in the retention of the remaining c-Si as a highly porous but interconnected structure, thus preserving the starting morphology. A thin pore-wall size of approximately 40 nm can accommodate large strains without pulverization, even after 100 cycles, and a maintained charge capacity of greater than 2800 mAhg 1 at a rate of 1 C (= 2000 mAhg ). SEM images of the SiO2/c-Si composites etched in HF (1m) for 2 h show that the Si particles retained their threedimensional morphology and show that the Si particles have many voids, like an “octopus foot” (Figure 1a–d). Because

859 citations


Journal ArticleDOI
22 May 2008-Nature
TL;DR: Experiments are reported showing that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition; this thermodynamic instability triggers the formation of density fluctuations, leading to spanning clusters that dynamically arrest to create a gel.
Abstract: Nanoscale or colloidal particles change the properties of materials, imparting solid-like behaviour to a wide variety of complex fluids. This behaviour arises when particles aggregate to form mesoscopic clusters and networks. Numerous scenarios for gelation have been proposed, but no consensus has emerged. Lu et al. report experiments showing that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition; this thermodynamic instability triggers the formation of density fluctuations, leading to spanning clusters that dynamically arrest to create a gel. This simple picture of gelation should apply to any particle system with short-range attractions. Solid-like behaviour arises in a wide variety of complex fluids upon gelation — aggregation of particles to form mesoscopic clusters and networks. The authors show that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition. Nanoscale or colloidal particles are important in many realms of science and technology. They can dramatically change the properties of materials, imparting solid-like behaviour to a wide variety of complex fluids1,2. This behaviour arises when particles aggregate to form mesoscopic clusters and networks. The essential component leading to aggregation is an interparticle attraction, which can be generated by many physical and chemical mechanisms. In the limit of irreversible aggregation, infinitely strong interparticle bonds lead to diffusion-limited cluster aggregation3 (DLCA). This is understood as a purely kinetic phenomenon that can form solid-like gels at arbitrarily low particle volume fraction4,5. Far more important technologically are systems with weaker attractions, where gel formation requires higher volume fractions. Numerous scenarios for gelation have been proposed, including DLCA6, kinetic or dynamic arrest4,7,8,9,10, phase separation5,6,11,12,13,14,15,16, percolation4,12,17,18 and jamming8. No consensus has emerged and, despite its ubiquity and significance, gelation is far from understood—even the location of the gelation phase boundary is not agreed on5. Here we report experiments showing that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition; this thermodynamic instability triggers the formation of density fluctuations, leading to spanning clusters that dynamically arrest to create a gel. This simple picture of gelation does not depend on microscopic system-specific details, and should thus apply broadly to any particle system with short-range attractions. Our results suggest that gelation—often considered a purely kinetic phenomenon4,8,9,10—is in fact a direct consequence of equilibrium liquid–gas phase separation5,13,14,15. Without exception, we observe gelation in all of our samples predicted by theory and simulation to phase-separate; this suggests that it is phase separation, not percolation12, that corresponds to gelation in models for attractive spheres.

836 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed fundamental design principles for increasing the efficiency of solar cells using light trapping by scattering from metal nanoparticles, and showed that cylindrical and hemispherical particles lead to much higher path length enhancements than spherical particles, due to enhanced near-field coupling, and that the path length enhancement for an electric point dipole is even higher than the Lambertian value.
Abstract: We develop fundamental design principles for increasing the efficiency of solar cells using light trapping by scattering from metal nanoparticles. We show that cylindrical and hemispherical particles lead to much higher path length enhancements than spherical particles, due to enhanced near-field coupling, and that the path length enhancement for an electric point dipole is even higher than the Lambertian value. Silver particles give much higher path length enhancements than gold particles. The scattering cross section of the particles is very sensitive to the thickness of a spacer layer at the substrate, which provides additional tunability in the design of particle arrays.

824 citations


Journal ArticleDOI
TL;DR: This work proposes a modification of this method in which the complex bond order vectors are averaged over the first neighbor shell of a given particle and the particle itself, which considerably improves the accuracy with which different crystal structures can be distinguished.
Abstract: Local bond order parameters based on spherical harmonics, also known as Steinhardt order parameters, are often used to determine crystal structures in molecular simulations. Here we propose a modification of this method in which the complex bond order vectors are averaged over the first neighbor shell of a given particle and the particle itself. As demonstrated using soft particle systems, this averaging procedure considerably improves the accuracy with which different crystal structures can be distinguished.

573 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed and synthesized the existing knowledge on ultrafine particles in the air with a specific focus on those originating due to vehicles emissions and focused on secondary particle formation in urban environments resulting from semi volatile precursors emitted by the vehicles.

Journal ArticleDOI
TL;DR: In this paper, the effect of temperature and particle volume concentration on the dynamic viscosity for the water-Al2O3 nanofluid has been experimentally investigated.

Journal ArticleDOI
TL;DR: Holzer and Sommerfeld as discussed by the authors proposed a simple correlation formula for the standard drag coefficient (i.e., a single stationary particle in a uniform flow) of arbitrary shaped particles, which can be easily used in the frame of Lagrangian computations where also the particle orientation along the trajectory is computed.

Journal ArticleDOI
TL;DR: In this study, copper nanoparticles were synthesized through a relatively large-scale, high-throughput (0.2 M) process through the chemical reduction of copper sulfate with sodium hypophosphite in ethylene glycol within the presence of a polymer surfactant (PVP), which was included to prevent aggregation and give dispersion stability to the resulting colloidal nanoparticles.
Abstract: Copper nanoparticles are being given considerable attention as of late due to their interesting properties and potential applications in many areas of industry. One such exploitable use is as the major constituent of conductive inks and pastes used for printing various electronic components. In this study, copper nanoparticles were synthesized through a relatively large-scale (5 l), high-throughput (0.2 M) process. This facile method occurs through the chemical reduction of copper sulfate with sodium hypophosphite in ethylene glycol within the presence of a polymer surfactant (PVP), which was included to prevent aggregation and give dispersion stability to the resulting colloidal nanoparticles. Reaction yields were determined to be quantitative while particle dispersion yields were between 68 and 73%. The size of the copper nanoparticles could be controlled between 30 and 65 nm by varying the reaction time, reaction temperature, and relative ratio of copper sulfate to the surfactant. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) images of the particles revealed a spherical shape within the reported size regime, and x-ray analysis confirmed the formation of face-centered cubic (FCC) metallic copper. Furthermore, inkjet printing nanocopper inks prepared from the polymer-stabilized copper nanoparticles onto polyimide substrates resulted in metallic copper traces with low electrical resistivities (≥3.6 µΩ cm, or ≥2.2 times the resistivity of bulk copper) after a relatively low-temperature sintering process (200 °C for up to 60 min).

Journal ArticleDOI
TL;DR: In this paper, the effect of particle size distributions during aggregation was determined by dynamic light scattering during aggregation and the order of effectiveness to prevent rapid aggregation and stabilize the dispersions was PSS70K(83%), PSS10K, PAP10K(82%), PAP2.5K(72%), CMC700K, and CMC90K(52%), where stability is defined operationally as the volume percent of particles that do not aggregate after 1.h.
Abstract: Nanoscale zerovalent iron (NZVI) particles are 5–40 nm sized Fe0/Fe-oxide particles that rapidly transform many environmental contaminants to benign products and are a promising in situ remediation agent. Rapid aggregation and limited mobility in water-saturated porous media limits the ability to deliver NZVI dispersions in the subsurface. This study prepares stable NZVI dispersions through physisorption of commercially available anionic polyelectrolytes, characterizes the adsorbed polymer layer, and correlates the polymer coating properties with the ability to prevent rapid aggregation and sedimentation of NZVI dispersions. Poly(styrene sulfonate) with molecular weights of 70 k and 1,000 k g/mol (PSS70K and PSS1M), carboxymethyl cellulose with molecular weights of 90 k and 700 k g/mol (CMC90K and CMC700K), and polyaspartate with molecular weights of 2.5 k and 10 k g/mol (PAP2.5K and 10K) were compared. Particle size distributions were determined by dynamic light scattering during aggregation. The order of effectiveness to prevent rapid aggregation and stabilize the dispersions was PSS70K(83%) > ≈PAP10K(82%) > PAP2.5K(72%) > CMC700K(52%), where stability is defined operationally as the volume percent of particles that do not aggregate after 1 h. CMC90K and PSS1M could not stabilize RNIP relative to bare RNIP. A similar trend was observed for their ability to prevent sedimentation, with 40, 34, 32, 20, and 5 wt%, of the PSS70K, PAP10K, PAP2.5K, CMC700K, and CMC90K modified NZVI remaining suspended after 7 h of quiescent settling, respectively. The stable fractions with respect to both aggregation and sedimentation correlate well with the adsorbed polyelectrolyte mass and thickness of the adsorbed polyelectrolyte layers as determined by Oshima’s soft particle theory. A fraction of the particles cannot be stabilized by any modifier and rapidly agglomerates to micron sized aggregates, as is also observed for unmodified NZVI. This non-dispersible fraction is attributed to strong magnetic attractions among the larger particles present in the polydisperse NZVI slurry, as the magnetic attractive forces increase as r6.

Journal ArticleDOI
01 Jul 2008-Tellus B
TL;DR: In this article, the authors summarized the existing published H-TDMA results on the size-resolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites.
Abstract: The hygroscopic properties play a vital role for the direct and indirect effects of aerosols on climate, as well as the health effects of particulate matter (PM) by modifying the deposition pattern of inhaled particles in the humid human respiratory tract. Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) instruments have been used in field campaigns in various environments globally over the last 25 yr to determine the water uptake on submicrometre particles at subsaturated conditions. These investigations have yielded valuable and comprehensive information regarding the particle hygroscopic properties of the atmospheric aerosol, including state of mixing. These properties determine the equilibrium particle size at ambient relative humidities and have successfully been used to calculate the activation of particles at water vapour supersaturation. This paper summarizes the existing published H-TDMA results on the size-resolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites. The data is classified into groups of hygroscopic growth indicating the external mixture, and providing clues to the sources and processes controlling the aerosol. An evaluation is given on how different chemical and physical properties affect the hygroscopic growth.

Journal ArticleDOI
TL;DR: In this article, an electrokinetic model has been formulated, which satisfactorily explains the microscopic dynamic origin of motility of metal particles in Si, and provides a facile approach to produce various Si nanostructures, especially ordered Si nanowire arrays from Si wafers of desired properties.
Abstract: The autonomous motion behavior of metal particles in Si, and the consequential anisotropic etching of silicon and production of Si nanostructures, in particular, Si nanowire arrays in oxidizing hydrofluoric acid solution, has been systematically investigated. It is found that the autonomous motion of metal particles (Ag and Au) in Si is highly uniform, yet directional and preferential along the [100] crystallographic orientation of Si, rather than always being normal to the silicon surface. An electrokinetic model has been formulated, which, for the first time, satisfactorily explains the microscopic dynamic origin of motility of metal particles in Si. According to this model, the power generated in the bipolar electrochemical reaction at a metal particle's surface can be directly converted into mechanical work to propel the tunneling motion of metal particles in Si. The mechanism of pore and wire formation and their dependence on the crystal orientation are discussed. These models not only provide fundamental interpretation of metal-induced formation of pits, porous silicon, and silicon nanowires and nanopores, they also reveal that metal particles in the metal/Si system could work as a self-propelled nanomotor. Significantly, it provides a facile approach to produce various Si nanostructures, especially ordered Si nanowire arrays from Si wafers of desired properties.

Journal ArticleDOI
TL;DR: This type of microfluidic system can filter deformable particles, is largely independent of particle density, and can provide throughputs typical of macroscale filtration in a compact format, enabling applications in blood filTration and particle concentration.
Abstract: Rapid separation and filtration of particles in solution has a wide range of applications including blood cell separation, ultrasound contrast agent preparation, and purification of fermentation products. However, current techniques that provide quick processing rates are high in complexity. We present a rapid microfluidic filtration technology capable of separating particles based on size, with purities from 90 to 100% and high-volume throughputs of 1 mL/min. Data for separation of rigid particles, deformable emulsions, and platelets from whole blood are presented. The system is based upon differential inertial focusing of particles of varying sizes and allows continuous separation based only on intrinsic hydrodynamic forces developed in a flow through an asymmetrically curved channel. A theoretical description of the underlying forces is developed, and in combination with data determining a size cutoff for separation, a semiempirical relationship describing how channel geometry is related to this cutoff is shown. Cascading separations in series is shown to be useful for increasing purity and yield. This type of microfluidic system can filter deformable particles, is largely independent of particle density, and can provide throughputs typical of macroscale filtration in a compact format, enabling applications in blood filtration and particle concentration.

Journal ArticleDOI
TL;DR: In this article, the authors summarize recent experimental, theoretical and observational results on the formation and growth of atmospheric nanoparticles, and suggest activation of existing neutral and/or ion clusters has been suggested.

Journal ArticleDOI
TL;DR: In this article, a review of statistical analyses of Lagrangian data from the ocean is presented, which can be grouped into studies involving single particles and those with pairs or groups of particles.

Journal ArticleDOI
TL;DR: In this paper, a global aerosol microphysics model was used to predict the contribution of boundary layer (BL) particle formation to regional and global distributions of cloud condensation nuclei (CCN).
Abstract: [1] We use a global aerosol microphysics model to predict the contribution of boundary layer (BL) particle formation to regional and global distributions of cloud condensation nuclei (CCN). Including an observationally derived particle formation scheme, where the formation rate of molecular clusters is proportional to gas-phase sulfuric acid to the power one, improves modeled particle size distribution and total particle number concentration at three continental sites in Europe. Particle formation increases springtime BL global mean CCN (0.2% supersaturation) concentrations by 3–20% and CCN (1%) by 5–50%. Uncertainties in particle formation and growth rates must be reduced before the accuracy of these predictions can be improved. These results demonstrate the potential importance of BL particle formation as a global source of CCN.

Journal ArticleDOI
TL;DR: The study of single NP collisions allows one to screen particle size distributions and estimate NP concentrations and diffusion coefficients and indicates that the collision of NPs at the detector electrodes occurs in a statistically random manner, with the average frequency a function of particle concentration and diffusion coefficient.
Abstract: Electrochemical hydrazine oxidation and proton reduction occur at a significantly higher rate at Pt than at Au or C electrodes. Thus, the collision and adhesion of a Pt particle on a less active Au or C electrode leads to a large current amplification by electrocatalysis at single nanoparticles (NPs). At low particle concentrations, the collision of Pt NPs was characterized by current transients composed of individual current profiles that rapidly attained a steady state, signaling single NP collisions. The characteristic steady-state current was used to estimate the particle size. The fluctuation in collision frequency with time indicates that the collision of NPs at the detector electrodes occurs in a statistically random manner, with the average frequency a function of particle concentration and diffusion coefficient. A longer term current decay in single current transients, as opposed to the expected steady-state behavior, was more pronounced for proton reduction than for hydrazine oxidation, revealing microscopic details of the nature of the particle interaction with the detector electrode and the kinetics of electrocatalysis at single NPs. The study of single NP collisions allows one to screen particle size distributions and estimate NP concentrations and diffusion coefficients.

Journal ArticleDOI
TL;DR: In this paper, the physical processes responsible for the transport and deposition of particles and their theoretical modeling are discussed, including stochastic Lagrangian particle tracking and a unified Eulerian advection diffusion approach.
Abstract: This article reviews the physical processes responsible for the transport and deposition of particles and their theoretical modeling. Both laminar and turbulent processes are considered, emphasizing the physical understanding of the various transport mechanisms. State-of-the-art computational methods for determining particle motion and deposition are discussed, including stochastic Lagrangian particle tracking and a unified Eulerian advection-diffusion approach. The theory presented includes Brownian and turbulent diffusion, turbophoresis, thermophoresis, inertial impaction, gravitational settling, electrical forces, and the effects of surface roughness and particle interception. The article describes two example applications: the deposition of particles in the human respiratory tract and deposition in gas and steam turbines.

Journal ArticleDOI
TL;DR: In this article, the authors investigated particle size effects on nanoparticle aggregation and stability, and found that at the same ionic strength and pH conditions, different particle sizes show different tendency to aggregate.
Abstract: Nanoparticles are ubiquitous in environment and are potentially important in many environmental processes such as sorption, coprecipitation, redox reactions, and dissolution. To investigate particle size effects on nanoparticle aggregation and stability, this study tested aggregation behavior of 12(±2), 32(±3), and 65(±3) nm (hydrated radius) hematite particles under environmental relevant pH and ionic strength conditions. The results showed that at the same ionic strength and pH conditions, different particle sizes show different tendency to aggregate. At the same ionic strength, aggregation rates are higher for smaller particles. The critical coagulation concentration also depends on particle size, and decreases as particle size decreases. As the particle size decreases, fast aggregation shifted to lower pH. This may be related to a dependence of PZC on particle size originating from change of structure and surface energy characteristics as particle size decreases. Under the same conditions, aggregation occurs faster as particle concentration increases. Even though the nanoparticles of different sizes show different response to the same pH and ionic strength, DLVO theory can be used to qualitatively understand hematite nanoparticle aggregation behavior.

Journal ArticleDOI
TL;DR: High Internal Phase Emulsions (HIPEs) are important for a wide range of applications in the food, cosmetic, pharmaceutical and petroleum industries and can be used as templates for the synthesis of highly porous polymers with potential applications as low weight structures or scaffolds in tissue engineering.
Abstract: High Internal Phase Emulsions (HIPEs) are important for a wide range of applications in the food, cosmetic, pharmaceutical and petroleum industries. If the continuous phase is polymerizable, HIPEs can be used as templates for the synthesis of highly porous polymers with potential applications as low weight structures or scaffolds in tissue engineering. HIPEs are characterized by a minimum internal phase volume ratio of 0.74 but Lissant first defined this minimum as 0.7. HIPEs consisting of a continuous organic phase and an internal aqueous phase (w/o emulsion), are commonly stabilized by large amounts of surfactants. Particle-stabilized emulsions also known as Pickering-emulsions have recently attracted much interest. Unlike surfactants, particles irreversibly adsorb at the interface of emulsions due to their high energy of attachment which makes them good emulsifiers. The ability of particles to adsorb at the interface between the two phases is primarily dependent on the wettability of the particles. Hydrophilic particles such as metal oxides tend to stabilize o/w emulsion while hydrophobic particles such as carbon tend to stabilize w/o emulsions. Nevertheless, it is possible to modify the wettability of particles by adsorbing surfactant molecules onto the particle surfaces or by silanation. All reports on particle-stabilized emulsions deal with emulsions having internal phase levels elow 70 vol.-%. Kralchevsky et al. developed a thermodynamic model, which predicts that

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of particulate phase on AMS collection efficiency for ammonium nitrate, ammonium sulfate, mixed ammonium ionate/ammonium sulfates, and particles coated with an organic liquid, and found that the higher CEs for liquid particles compared with solid particles tended to stick upon impact with the AMS vaporizer.
Abstract: The Aerodyne Aerosol Mass Spectrometer (AMS) is a useful tool to study ambient particles. To be quantitative, the mass or (number) of particles detected by the AMS relative to the mass (or number) of particles sampled by the AMS, or the AMS collection efficiency (CE), must be known. Here we investigated the effect of particulate phase on AMS CE for ammonium nitrate, ammonium sulfate, mixed ammonium nitrate/ammonium sulfate, and ammonium sulfate particles coated with an organic liquid. Dry, solid ammonium sulfate particles were sampled with a CE of 24 ± 3%. Liquid droplets and solid particles that were thickly coated with a liquid organic were collected with a CE of 100%. Mixed phase particles, solid particles thinly coated with liquid organic, and metastable aqueous ammonium sulfate droplets had intermediate CEs. The higher CEs for liquid particles compared with solid particles were attributed to wet or coated particles tending to stick upon impact with the AMS vaporizer, while a significant fraction of s...

Journal ArticleDOI
TL;DR: In this article, the authors combined analyses of transport and kinetics in determining resulting stresses, which arise from concentration gradients in cathode particles, and heat generation, and found that intercalation-induced stress and time-averaged resistive heat generation rate increase with particle radius and potential sweep rate.
Abstract: Intercalation-induced stress and heat generation inside Li-ion battery cathode (LiMn 2 O 4 ) particles under potentiodynamic control are simulated in this paper. We combined analyses of transport and kinetics in determining resulting stresses, which arise from concentration gradients in cathode particles, and heat generation. Two peaks in boundary reaction flux, and resulting stresses, were determined from the modeling of electrochemical kinetics and diffusion, using intrinsic material properties (resulting in two plateaus in the open-circuit potential) and the applied potential. Resistive heating was identified as the most important heat generation source. To probe the impact of the particle shape (equivalent radius and aspect ratio of an ellipsoidal particle) and the potential sweep rate on stress and heat generation, a surrogate-based analysis was also conducted. The systematic study showed that both intercalation-induced stress and time-averaged resistive heat generation rate increase with particle radius and potential sweep rate. Intercalation-induced stress increases first, then decreases as the aspect ratio of an ellipsoidal particle increases, whereas time-averaged resistive heat generation rate decreases as aspect ratio increases. This surrogate-based analysis suggests that ellipsoidal particles with larger aspect ratios are preferred over spherical particles, in improving battery performance when stress and heat generation are the only factors considered.

Journal ArticleDOI
TL;DR: This work presents a fully relativistic energy-conserving binary collision model for particle simulations with large density scale plasmas, conserving energy perfectly in each collision while momentum is conserved on the average.

Journal ArticleDOI
TL;DR: In this paper, a kinetic theory is developed and applied to study the linear stability and the nonlinear pattern formation in self-propelled particle suspensions, and the evolution of a suspension of self-powered particles is modeled using a conservation equation for the particle configurations, coupled to a mean-field description of the flow arising from the stress exerted by the particles on the fluid.
Abstract: Suspensions of self-propelled particles, such as swimming micro-organisms, are known to undergo complex dynamics as a result of hydrodynamic interactions To elucidate these dynamics, a kinetic theory is developed and applied to study the linear stability and the nonlinear pattern formation in these systems The evolution of a suspension of self-propelled particles is modeled using a conservation equation for the particle configurations, coupled to a mean-field description of the flow arising from the stress exerted by the particles on the fluid Based on this model, we first investigate the stability of both aligned and isotropic suspensions In aligned suspensions, an instability is shown to always occur at finite wavelengths, a result that extends previous predictions by Simha and Ramaswamy [“Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles,” Phys Rev Lett 89, 058101 (2002)] In isotropic suspensions, we demonstrate the existence of an instability for th

Journal ArticleDOI
TL;DR: Gorham and Kharaz as discussed by the authors proposed a multi-sphere approach for the simulation of spherical or symmetric shaped particles like ellipses/ellipsoids or superquadrics.