scispace - formally typeset
Topic

Particle size

About: Particle size is a(n) research topic. Over the lifetime, 69853 publication(s) have been published within this topic receiving 1708357 citation(s). The topic is also known as: grain size.
Papers
More filters

Journal ArticleDOI
Abstract: A simple route to the production of high-quality CdE (E=S, Se, Te) semiconductor nanocrystallites is presented. Crystallites from ∼12 A to ∼115 A in diameter with consistent crystal structure, surface derivatization, and a high degree of monodispersity are prepared in a single reaction. The synthesis is based on the pyrolysis of organometallic reagents by injection into a hot coordinating solvent. This provides temporally discrete nucleation and permits controlled growth of macroscopic quantities of nanocrystallites. Size selective precipitation of crystallites from Portions of the growth solution isolates samples with narrow size distributions (<5% rms in diameter). High sample quality results in sharp absorption features and strong «band-edge» emission which is tunable with particle size and choice of material

7,951 citations


Journal ArticleDOI
G. Frens1
01 Jan 1973-Nature
Abstract: MANY properties of colloids and suspensions depend on the particle size. Series of monodisperse suspensions of the same chemical composition but of rather different particle sizes may be used to study particle size dependent phenomena, such as Brownian motion, light scattering, sedimentation and electrophoresis of small particles. We have used such series to demonstrate the increased tendency of metal suspensions to coagulate in the presence of electrolytes as the radius of the particles increases1.

7,162 citations


Journal ArticleDOI
15 Aug 1996-Nature
TL;DR: A method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition is described.
Abstract: COLLOIDAL particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties1–4 that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectro-scopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods2–4. A great deal of control can now be exercised over the chemical composition, size and polydis-persity1,2 of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligo-nucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.

5,892 citations


Book
27 Jul 1982-
Abstract: Properties of Gases Uniform Particle Motion Particle Size Statistics Straight-Line Acceleration and Curvilinear Particle Motion Adhesion of Particles Brownian Motion and Diffusion Thermal and Radiometric Forces Filtration Sampling and Measurement of Concentration Respiratory Deposition Coagulation Condensation and Evaporation Atmospheric Aerosols Electrical Properties Optical Properties Bulk Motion of Aerosols Dust Explosions Bioaerosols Microscopic Measurement of Particle Size Production of Test Aerosols Appendices Index

4,975 citations


Journal ArticleDOI
Lars Onsager1
Abstract: Introdzution. The shapes of colloidal particles are often reasonably compact, so that no diameter greatly exceeds the cube root of the volume of the particle. On the other hand, we know many coiloids whose particles are greatly extended into sheets (bentonite), rods (tobacco virus), or flexible chains (myosin, various Iinear polymers). In some instances, a t least, solutions of such highly anisometric particles are known to exhibit remarkably great deviations from Raoult’s law, even to the extent that an anisotropic phase may separate from a solution in which the particles themselves occupy but one or two per cent of the total volume (tobacco virus, bentonite). We shall show in what follows how such results may arise from electrostatic repulsion between highly anisometric particles. Most colloids in aqueous solution owe their stability more or less to electric charges, so that each particle will repel others before they come into actual contact, and effectively claim for itself a greater volume than what it actuaily occupies. Thus, we can understand that colloids in general are apt to exhibit considerable deviations from Raoult’s law and that crystalline phases retaining a fair proportion of solvent may separate from concentrated solutions. However, if we tentatively increase the known size of the particles by the known range of the electric forces and multiply the resulting volume by four in order to compute the effective van der Waal’s co-volume, we have not nearly enough to explain why a solution of 2 per cent tobacco virus in 0.005 normal NaCZ forms two phases.

3,990 citations


Network Information
Related Topics (5)
Agglomerate

1.2K papers, 25.6K citations

93% related
Zeta potential

9.7K papers, 267.3K citations

93% related
Particle-size distribution

6.7K papers, 148.3K citations

93% related
Fourier transform infrared spectroscopy

48.2K papers, 1.1M citations

91% related
Nanoparticle

85.9K papers, 2.6M citations

91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202281
20211,865
20202,423
20192,535
20182,585
20172,636

Top Attributes

Show by:

Topic's top 5 most impactful authors

Kikuo Okuyama

99 papers, 5.2K citations

Markku Kulmala

45 papers, 2.8K citations

Wolfgang Peukert

43 papers, 1.2K citations

Sotiris E. Pratsinis

39 papers, 3.1K citations

Aibing Yu

37 papers, 1.5K citations