scispace - formally typeset

Topic

Particulates

About: Particulates is a(n) research topic. Over the lifetime, 15137 publication(s) have been published within this topic receiving 350400 citation(s). The topic is also known as: atmospheric particulate matter & APM.


Papers
More filters
Journal ArticleDOI
09 Oct 2014-Nature
TL;DR: The results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from fossil fuel combustion and biomass burning is likely to be important for controlling China’s PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
Abstract: Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

2,614 citations

Journal ArticleDOI
Abstract: Diesel exhaust has been classified a probable human carcinogen, and the National Institute for Occupational Safety and Health (NIOSH) has recommended that employers reduce workers' exposures. Because diesel exhaust is a chemically complex mixture containing thousands of compounds, some measure of exposure must be selected. Previously used methods involving gravimetry or analysis of the soluble organic fraction of diesel soot lack adequate sensitivity and selectivity for low-level determination of particulate diesel exhaust; a new analytical approach was therefore needed. In this paper, results of investigation of a thermal-optical technique for analysis of the carbonaceous fraction of particulate diesel exhaust are reported. With this technique, speciation of organic and elemental carbon is accomplished through temperature and atmosphere control, and by an optical feature that corrects for pyrolytically generated carbon, or “char,” which is formed during the analysis of some materials. The therma...

1,651 citations

Journal ArticleDOI
TL;DR: The basic evidence on the health effects of particulate matter is summarized and an in-depth analysis is provided to address the implications for policy-makers so that more stringent strategies can be implemented to reduce air pollution and its health effects.
Abstract: Particulate matter (PM) is a key indicator of air pollution brought into the air by a variety of natural and human activities. As it can be suspended over long time and travel over long distances in the atmosphere, it can cause a wide range of diseases that lead to a significant reduction of human life. The size of particles has been directly linked to their potential for causing health problems. Small particles of concern include "inhalable coarse particles" with a diameter of 2.5 to 10μm and "fine particles" smaller than 2.5μm in diameter. As the source-effect relationship of PM remains unclear, it is not easy to define such effects from individual sources such as long-range transport of pollution. Because of the potent role of PM and its associated pollutants, detailed knowledge of their human health impacts is of primary importance. This paper summarizes the basic evidence on the health effects of particulate matter. An in-depth analysis is provided to address the implications for policy-makers so that more stringent strategies can be implemented to reduce air pollution and its health effects.

1,385 citations

Journal ArticleDOI
Abstract: A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution:; from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

1,350 citations


Network Information
Related Topics (5)
Environmental exposure

37.4K papers, 1.8M citations

81% related
Particle size

69.8K papers, 1.7M citations

80% related
Combustion

172.3K papers, 1.9M citations

76% related
Global warming

36.6K papers, 1.6M citations

76% related
Organic matter

45.5K papers, 1.6M citations

76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202239
2021606
2020773
2019747
2018676
2017653