scispace - formally typeset
Search or ask a question
Topic

Particulates

About: Particulates is a research topic. Over the lifetime, 15137 publications have been published within this topic receiving 350400 citations. The topic is also known as: atmospheric particulate matter & APM.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a brief review of the organic matter composition in aerosols derived from the major sources is also given, with emphasis on the detection of biomass burning components, and a long range transport of smoke particulate matter with the associated organic compounds is also discussed.

1,325 citations

Journal ArticleDOI
TL;DR: Overall, the data presented provides little support for the idea that any single major or trace component of the particulate matter is responsible for the adverse effects.

1,095 citations

Journal ArticleDOI
TL;DR: Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution.
Abstract: Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 μm (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-tem-perature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated t...

1,018 citations

Journal ArticleDOI
TL;DR: In this article, a two-stage dilution source sampling system was used to quantify gas and particle-phase tailpipe emissions from late-model medium duty diesel trucks using a two stage dilution sampling system.
Abstract: Gas- and particle-phase tailpipe emissions from late-model medium duty diesel trucks are quantified using a two-stage dilution source sampling system. The diesel trucks are driven through the hot-start Federal Test Procedure (FTP) urban driving cycle on a transient chassis dynamometer. Emission rates of 52 gas-phase volatile hydrocarbons, 67 semivolatile and 28 particle-phase organic compounds, and 26 carbonyls are quantified along with fine particle mass and chemical composition. When all C_1−C_(13) carbonyls are combined, they account for 60% of the gas-phase organic compound mass emissions. Fine particulate matter emission rates and chemical composition are quantified simultaneously by two methods: a denuder/filter/PUF sampler and a traditional filter sampler. Both sampling techniques yield the same elemental carbon emission rate of 56 mg km^(-1) driven, but the particulate organic carbon emission rate determined by the denuder-based sampling technique is found to be 35% lower than the organic carbon mass collected by the traditional filter-based sampling technique due to a positive vapor-phase sorption artifact that affects the traditional filter sampling technique. The distribution of organic compounds in the diesel fuel used in this study is compared to the distribution of these compounds in the vehicle exhaust. Significant enrichment in the ratio of unsubstituted polycyclic aromatic hydrocarbons (PAH) to their methyl- and dimethyl-substituted homologues is observed in the tailpipe emissions relative to the fuel. Isoprenoids and tricyclic terpanes are quantified in the semivolatile organics emitted from diesel vehicles. When used in conjunction with data on the hopanes, steranes, and elemental carbon emitted, the isoprenoids and the tricyclic terpanes may help trace the presence of diesel exhaust in atmospheric samples.

988 citations

Journal ArticleDOI
TL;DR: A review of the current state of organic aerosol sampling, analysis, and simulation, examines the limitations of current technology, and presents prospects for the future is provided in this article, where the emphasis is on distilling findings from recent atmospheric, smog chamber, and theoretical studies to provide a coherent picture of what has been accomplished, especially during the last five years.

967 citations


Network Information
Related Topics (5)
Environmental exposure
37.4K papers, 1.8M citations
81% related
Particle size
69.8K papers, 1.7M citations
80% related
Combustion
172.3K papers, 1.9M citations
76% related
Global warming
36.6K papers, 1.6M citations
76% related
Organic matter
45.5K papers, 1.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,128
20224,451
2021663
2020775
2019748
2018676