Topic
Parton
About: Parton is a(n) research topic. Over the lifetime, 13484 publication(s) have been published within this topic receiving 368877 citation(s).
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this article, the main body of predictions of the theory for deep-inleastic scattering on either unpolarized or polarized targets is re-obtained by a method which only makes use of the simplest tree diagrams and is entirely phrased in parton language with no reference to the conventional operator formalism.
Abstract: A novel derivation of the Q2 dependence of quark and gluon densities (of given helicity) as predicted by quantum chromodynamics is presented. The main body of predictions of the theory for deep-inleastic scattering on either unpolarized or polarized targets is re-obtained by a method which only makes use of the simplest tree diagrams and is entirely phrased in parton language with no reference to the conventional operator formalism.
4,348 citations
[...]
TL;DR: In this paper, a new generation of parton distribution functions with increased precision and quantitative estimates of uncertainties is presented, using a recently developed eigenvector-basis approach to the hessian method, which provides the means to quickly estimate the uncertainties of a wide range of physical processes at these high-energy hadron colliders, based on current knowledge of the parton distributions.
Abstract: A new generation of parton distribution functions with increased precision and quantitative estimates of uncertainties is presented. This work signiflcantly extends previous CTEQ and other global analyses on two fronts: (i) a full treatment of available experimental correlated systematic errorsforbothnewandolddata sets; (ii) asystematic and pragmatic treatment of uncertainties of the parton distributions and their physical predictions, using a recently developed eigenvector-basis approach to the hessian method. The new gluon distribution is considerably harder than that of previous standard flts. A numberofphysicsissues,particularlyrelatingtothebehaviorofthegluondistribution,are addressedinmorequantitativetermsthanbefore. Extensiveresultsontheuncertaintiesof parton distributions at various scales, and on parton luminosity functions at the Tevatron RunII and the LHC, are presented. The latter provide the means to quickly estimate the uncertainties of a wide range of physical processes at these high-energy hadron colliders, basedoncurrentknowledgeofthepartondistributions. Inparticular, theuncertaintieson the production cross sections of the W, Z at the Tevatron and the LHC are estimated to be§4% and§5%, respectively, and that of a light Higgs at the LHC to be§5%.
4,299 citations
[...]
TL;DR: In this paper, the authors presented an updated leading-order, next-to-leading order and next-next-ordering order parton distribution function (MSTW 2008) determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the $\overline{\mathrm{MS}}$¯¯$¯¯¯¯¯
Abstract: We present updated leading-order, next-to-leading order and next-to-next-to-leading order parton distribution functions (“MSTW 2008”) determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the $\overline{\mathrm{MS}}$
scheme. These parton distributions supersede the previously available “MRST” sets and should be used for the first LHC data taking and for the associated theoretical calculations. New data sets fitted include CCFR/NuTeV dimuon cross sections, which constrain the strange-quark and -antiquark distributions, and Tevatron Run II data on inclusive jet production, the lepton charge asymmetry from W decays and the Z rapidity distribution. Uncertainties are propagated from the experimental errors on the fitted data points using a new dynamic procedure for each eigenvector of the covariance matrix. We discuss the major changes compared to previous MRST fits, briefly compare to parton distributions obtained by other fitting groups, and give predictions for the W and Z total cross sections at the Tevatron and LHC.
3,433 citations
[...]
TL;DR: Pythia 8.2 is the second main release after the complete rewrite from Fortran to C++, and now has reached such a maturity that it offers a complete replacement for most applications, notably for LHC physics studies.
Abstract: The Pythia program is a standard tool for the generation of events in high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multiparticle final state. It contains a library of hard processes, models for initial- and final-state parton showers, matching and merging methods between hard processes and parton showers, multiparton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and several interfaces to external programs. Pythia 8.2 is the second main release after the complete rewrite from Fortran to C++, and now has reached such a maturity that it offers a complete replacement for most applications, notably for LHC physics studies. The many new features should allow an improved description of data.
3,167 citations
[...]
TL;DR: In this article, the authors extract new parton distribution functions (PDFs) of the proton by global analysis of hard scattering data in the general-mass framework of perturbative quantum chromodynamics.
Abstract: We extract new parton distribution functions (PDFs) of the proton by global analysis of hard scattering data in the general-mass framework of perturbative quantum chromodynamics Our analysis includes new theoretical developments together with the most recent collider data from deep-inelastic scattering, vector boson production, and single-inclusive jet production Because of the difficulty in fitting both the D0 Run-II W lepton asymmetry data and some fixed-target DIS data, we present two families of PDFs, CT10 and CT10W, without and with these high-luminosity W lepton asymmetry data included in the global analysis With both sets of PDFs, we study theoretical predictions and uncertainties for a diverse selection of processes at the Fermilab Tevatron and the CERN Large Hadron Collider
2,249 citations