scispace - formally typeset
Search or ask a question
Topic

Patch antenna

About: Patch antenna is a research topic. Over the lifetime, 35129 publications have been published within this topic receiving 446073 citations. The topic is also known as: Microstrip antenna.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a reactive impedance surface (RIS) as a substrate for planar antennas that can miniaturize the size and significantly enhance both the bandwidth and the radiation characteristics of an antenna.
Abstract: The concept of a novel reactive impedance surface (RIS) as a substrate for planar antennas, that can miniaturize the size and significantly enhance both the bandwidth and the radiation characteristics of an antenna is introduced. Using the exact image formulation for the fields of elementary sources above impedance surfaces, it is shown that a purely reactive impedance plane with a specific surface reactance can minimize the interaction between the elementary source and its image in the RIS substrate. An RIS can be tuned anywhere between perfectly electric and magnetic conductor (PEC and PMC) surfaces offering a property to achieve the optimal bandwidth and miniaturization factor. It is demonstrated that RIS can provide performance superior to PMC when used as substrate for antennas. The RIS substrate is designed utilizing two-dimensional periodic printed metallic patches on a metal-backed high dielectric material. A simplified circuit model describing the physical phenomenon of the periodic surface is developed for simple analysis and design of the RIS substrate. Also a finite-difference time-domain (FDTD) full-wave analysis in conjunction with periodic boundary conditions and perfectly matched layer walls is applied to provide comprehensive study and analysis of complex antennas on such substrates. Examples of different planar antennas including dipole and patch antennas on RIS are considered, and their characteristics are compared with those obtained from the same antennas over PEC and PMC. The simulations compare very well with measured results obtained from a prototype /spl lambda//10 miniaturized patch antenna fabricated on an RIS substrate. This antenna shows measured relative bandwidth, gain, and radiation efficiency of BW=6.7, G=4.5 dBi, and e/sub r/=90, respectively, which constitutes the highest bandwidth, gain, and efficiency for such a small size thin planar antenna.

653 citations

Journal ArticleDOI
TL;DR: In this article, a direct three-dimensional finite-difference time-domain (FDTD) method is applied to the full-wave analysis of various microstrip structures and antennas.
Abstract: A direct three-dimensional finite-difference time-domain (FDTD) method is applied to the full-wave analysis of various microstrip structures. The method is shown to be an efficient tool for modeling complicated microstrip circuit components and microstrip antennas. From the time-domain results the input impedance of a line-fed rectangular patch antenna and the frequency-dependent scattering parameters of a low-pass filter and a branch-line coupler are calculated. These circuits were fabricated and the measurements made on them are compared with the FDTD results and shown to be in good agreement. >

646 citations

Journal ArticleDOI
TL;DR: In this paper, a new class of antennas using microstrips to form the feed networks and radiators is presented in this communication, which have four distinct advantages: 1) cost, 2) performance, 3) ease of installation, and 4) low profile conformal design.
Abstract: A new class of antennas using microstrips to form the feed networks and radiators is presented in this communication. These antennas have four distinct advantages: 1) cost, 2) performance, 3) ease of installation, and 4) the low profile conformal design. The application of these antennas is limited to small bandwidths. Phased arrays using these techniques are also discussed.

608 citations

Journal ArticleDOI
TL;DR: In this article, three types of single-feed circularly polarized microstrip antennas, namely, a diagonal fed nearly square, a truncated-corners square and a square with a diagonal slot, are presented.
Abstract: Analysis and optimized designs are presented of three types of single feed circularly polarized microstrip antennas, namely, a diagonal fed nearly square, a truncated-corners square and a square with a diagonal slot. The Green's function approach and the desegmentation methods are used. The resonant frequencies are calculated for two orthogonal modes which together yield circular polarization. Optimum feed locations are determined for the best impedance match to a 50 \Omega coaxial feed line. Axial-ratio bandwidths, voltage standing-wave ratio (VSWR) bandwidths and radiation patterns are evaluated and verified experimentally.

602 citations

Journal ArticleDOI
TL;DR: In this article, a dual-band coplanar patch antenna integrated with an electromagnetic band gap substrate is described, where the antenna structure is made from common clothing fabrics and operates at the 2.45 and 5 GHz bands.
Abstract: Performance of a dual-band coplanar patch antenna integrated with an electromagnetic band gap substrate is described. The antenna structure is made from common clothing fabrics and operates at the 2.45 and 5 GHz wireless bands. The design of the coplanar antenna, band gap substrate, and their integration is presented. The band gap array consists of just 3 times 3 elements but reduces radiation into the body by over 10 dB and improves the antenna gain by 3 dB. The performance of the antenna under bending conditions and when placed on the human body are presented.

599 citations


Network Information
Related Topics (5)
Microstrip antenna
43.9K papers, 604.4K citations
98% related
Antenna measurement
39.6K papers, 494.4K citations
97% related
Dipole antenna
38K papers, 513.8K citations
96% related
Antenna (radio)
208K papers, 1.8M citations
96% related
Bandwidth (signal processing)
48.5K papers, 600.7K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023461
20221,225
2021789
20201,054
20191,257
20181,143