scispace - formally typeset
Search or ask a question
Topic

Path vector protocol

About: Path vector protocol is a research topic. Over the lifetime, 6993 publications have been published within this topic receiving 153748 citations.


Papers
More filters
01 Oct 2003
TL;DR: The Optimized Link State Routing protocol is an optimization of the classical link state algorithm tailored to the requirements of a mobile wireless LAN and provides optimal routes (in terms of number of hops).
Abstract: This document describes the Optimized Link State Routing (OLSR) protocol for mobile ad hoc networks. The protocol is an optimization of the classical link state algorithm tailored to the requirements of a mobile wireless LAN. The key concept used in the protocol is that of multipoint relays (MPRs). MPRs are selected nodes which forward broadcast messages during the flooding process. This technique substantially reduces the message overhead as compared to a classical flooding mechanism, where every node retransmits each message when it receives the first copy of the message. In OLSR, link state information is generated only by nodes elected as MPRs. Thus, a second optimization is achieved by minimizing the number of control messages flooded in the network. As a third optimization, an MPR node may chose to report only links between itself and its MPR selectors. Hence, as contrary to the classic link state algorithm, partial link state information is distributed in the network. This information is then used for route calculation. OLSR provides optimal routes (in terms of number of hops). The protocol is particularly suitable for large and dense networks as the technique of MPRs works well in this context.

5,442 citations

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations

Journal ArticleDOI
TL;DR: In this article, a deadlock-free routing algorithm for arbitrary interconnection networks using the concept of virtual channels is presented, where the necessary and sufficient condition for deadlock free routing is the absence of cycles in a channel dependency graph.
Abstract: A deadlock-free routing algorithm can be generated for arbitrary interconnection networks using the concept of virtual channels. A necessary and sufficient condition for deadlock-free routing is the absence of cycles in a channel dependency graph. Given an arbitrary network and a routing function, the cycles of the channel dependency graph can be removed by splitting physical channels into groups of virtual channels. This method is used to develop deadlock-free routing algorithms for k-ary n-cubes, for cube-connected cycles, and for shuffle-exchange networks.

2,110 citations

01 Jan 2000
TL;DR: Urethane prepolymer compositions are made from 1- isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane and polyols at a total NCO to OH ratio of at least 1.2:1, and the prepolymers are reacted with cycloaliphatic polyamines to give urea-urethanes.

1,912 citations

Proceedings ArticleDOI
30 Aug 2004
TL;DR: This work forms the delay-tolerant networking routing problem, where messages are to be moved end-to-end across a connectivity graph that is time-varying but whose dynamics may be known in advance, and proposes a framework for evaluating routing algorithms in such environments.
Abstract: We formulate the delay-tolerant networking routing problem, where messages are to be moved end-to-end across a connectivity graph that is time-varying but whose dynamics may be known in advance. The problem has the added constraints of finite buffers at each node and the general property that no contemporaneous end-to-end path may ever exist. This situation limits the applicability of traditional routing approaches that tend to treat outages as failures and seek to find an existing end-to-end path. We propose a framework for evaluating routing algorithms in such environments. We then develop several algorithms and use simulations to compare their performance with respect to the amount of knowledge they require about network topology. We find that, as expected, the algorithms using the least knowledge tend to perform poorly. We also find that with limited additional knowledge, far less than complete global knowledge, efficient algorithms can be constructed for routing in such environments. To the best of our knowledge this is the first such investigation of routing issues in DTNs.

1,854 citations


Network Information
Related Topics (5)
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
90% related
Wireless sensor network
142K papers, 2.4M citations
90% related
Wireless network
122.5K papers, 2.1M citations
89% related
Wireless ad hoc network
49K papers, 1.1M citations
89% related
Network packet
159.7K papers, 2.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202224
20214
20206
201911
201830