scispace - formally typeset
Search or ask a question
Topic

Peak ground acceleration

About: Peak ground acceleration is a research topic. Over the lifetime, 6292 publications have been published within this topic receiving 124906 citations. The topic is also known as: PGA.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce a method for the evaluation of the seismic risk at the site of an engineering project, in terms of a ground motion parameter (such as peak acceleration) versus average return period.
Abstract: This paper introduces a method for the evaluation of the seismic risk at the site of an engineering project. The results are in terms of a ground motion parameter (such as peak acceleration) versus average return period. The method incorporates the influence of all potential sources of earthquakes and the average activity rates assigned to them. Arbitrary geographical relationships between the site and potential point, line, or areal sources can be modeled with computational ease. In the range of interest, the derived distributions of maximum annual ground motions are in the form of Type I or Type II extreme value distributions, if the more commonly assumed magnitude distribution and attenuation laws are used.

3,081 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a frequency-domain scaling model for predicting seismic motions as a function of source strength, which can be applied to any time series having a stochastic character, including ground acceleration, velocity and the oscillator outputs on which response spectra and magnitude are based.
Abstract: Theoretical predictions of seismic motions as a function of source strength are often expressed as frequency-domain scaling models. The observations of interest to strong-motion seismology, however, are usually in the time domain (e.g., various peak motions, including magnitude). The method of simulation presented here makes use of both domains; its essence is to filter a suite of windowed, stochastic time series so that the amplitude spectra are equal, on the average, to the specified spectra. Because of its success in predicting peak and rms accelerations (Hanks and McGuire, 1981), an ω -squared spectrum with a high-frequency cutoff ( f m), in addition to the usual whole-path anelastic attenuation, and with a constant stress parameter (Δ σ ) has been used in the applications of the simulation method. With these assumptions, the model is particularly simple: the scaling with source size depends on only one parameter—seismic moment or, equivalently, moment magnitude. Besides peak acceleration, the model gives a good fit to a number of ground motion amplitude measures derived from previous analyses of hundreds of recordings from earthquakes in western North America, ranging from a moment magnitude of 5.0 to 7.7. These measures of ground motion include peak velocity, Wood-Anderson instrument response, and response spectra. The model also fits peak velocities and peak accelerations for South African earthquakes with moment magnitudes of 0.4 to 2.4 (with f m = 400 Hz and Δ σ = 50 bars, compared to f m = 15 Hz and Δ σ = 100 bars for the western North America data). Remarkably, the model seems to fit all essential aspects of high-frequency ground motions for earthquakes over a very large magnitude range . Although the simulation method is useful for applications requiring one or more time series, a simpler, less costly method based on various formulas from random vibration theory will often suffice for applications requiring only peak motions. Hanks and McGuire (1981) used such an approach in their prediction of peak acceleration. This paper contains a generalization of their approach; the formulas used depend on the moments (in the statistical sense) of the squared amplitude spectra, and therefore can be applied to any time series having a stochastic character, including ground acceleration, velocity, and the oscillator outputs on which response spectra and magnitude are based .

1,708 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived ground motion prediction equations for average horizontal-component ground motions as a function of earthquake magnitude, distance from source to site, local average shear-wave velocity, and fault type.
Abstract: This paper contains ground-motion prediction equations (GMPEs) for average horizontal-component ground motions as a function of earthquake magnitude, distance from source to site, local average shear-wave velocity, and fault type. Our equations are for peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped pseudo-absolute-acceleration spectra (PSA) at periods between 0.01 s and 10 s. They were derived by empirical regression of an extensive strong-motion database compiled by the “PEER NGA” (Pacific Earthquake Engineering Research Center’s Next Generation Attenuation) project. For periods less than 1s , the analysis used 1,574 records from 58 mainshocks in the distance range from 0 km to 400 km (the number of available data decreased as period increased). The primary predictor variables are moment magnitude M, closest horizontal distance to the surface projection of the fault plane R JB , and the time-averaged shear-wave velocity from the surface to 30 m VS30. The equations are applicable for M =5–8 , RJB 200 km, and VS30= 180– 1300 m / s. DOI: 10.1193/1.2830434

1,512 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide tables for estimating random horizontal component peak acceleration and 5 percent damped pseudo-acceleration response spectra in terms of the natural, rather than common, logarithm of the ground-motion parameter.
Abstract: In this paper we summarize our recently-published work on estimating horizontal response spectra and peak acceleration for shallow earthquakes in western North America. Although none of the sets of coefficients given here for the equations are new, for the convenience of the reader and in keeping with the style of this special issue, we provide tables for estimating random horizontal-component peak acceleration and 5 percent damped pseudo-acceleration response spectra in terms of the natural, rather than common, logarithm of the ground-motion parameter. The equations give ground motion in terms of moment magnitude, distance, and site conditions for strike-slip, reverse-slip, or unspecified faulting mechanisms. Site conditions are represented by the shear velocity averaged over the upper 30 m, and recommended values of average shear velocity are given for typical rock and soil sites and for site categories used in the National Earthquake Hazards Reduction Program's recommended seismic code provisions. In addition, we stipulate more restrictive ranges of magnitude and distance for the use of our equations than in our previous publications. Finally, we provide tables of input parameters that include a few corrections to site classifications and earthquake magnitude (the corrections made a small enough difference in the ground-motion predictions that we chose not to change the coefficients of the prediction equations).

1,129 citations

Journal ArticleDOI
TL;DR: The magnitude of an earthquake was originally defined by the junior author of as discussed by the authors for shocks in southern California, as the logarithm of the maximum trace amplitude expressed in thousandths of a millimeter with which the standard short-period torsion seismometer (free period 0.8 sec., static magnification============2800, damping nearly critical) would register that earthquake at an detectable distance of 100 kilometers.
Abstract: The magnitude of an earthquake was originally defined by the junior author (Richter, 1935), for shocks in southern California, as the logarithm of the maximum trace amplitude expressed in thousandths of a millimeter with which the standard short-period torsion seismometer (free period 0.8 sec., static magnification 2800, damping nearly critical) would register that earthquake at an epicentral distance of 100 kilometers. Gutenberg and Richter (1936) extended the scale to apply to earthquakes occurring elsewhere and recorded on other types of instruments.

1,118 citations


Network Information
Related Topics (5)
Fault (geology)
26.7K papers, 744.5K citations
82% related
Subduction
22.4K papers, 1.1M citations
78% related
Crust
20.7K papers, 933.1K citations
76% related
Lithosphere
14.5K papers, 723.8K citations
76% related
Fracture (geology)
41K papers, 677.6K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023191
2022342
2021312
2020265
2019241
2018253