scispace - formally typeset
Search or ask a question
Topic

Pearlite

About: Pearlite is a research topic. Over the lifetime, 6028 publications have been published within this topic receiving 65695 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that after hot working and accelerated cooling transforming the austenite mainly in an acicular microstructure, ductile rupture results without any cleavage nucleated in the coarse TiN particles, as occurred when the same material had a coarse ferrite-pearlite micro-structure.
Abstract: Ti addition is becoming common practice in the fabrication of many grades of engineering steels. In general it is used with the aim of refining the microstructure through the inhibiting effect to grain coarsening exerted by small TiN precipitates. Although a number of recommendations are made for obtaining the maximum yield of fine TiN precipitates, nonetheless a certain proportion of the precipitate volume fraction is usually in the form of coarse TiN precipitates. Several authors suggest that such coarse TiN particles are simply ineffective in pinning the grain boundaries without impairing other properties. In a recent paper it was shown that these coarse TiN particles act as cleavage nucleation sites, impairing the fracture toughness of steel with coarse ferrite-pearlite microstructures. The present work reports further fracture toughness results and fracture mechanisms for Ti treated microalloyed forging steels. They show that after hot working and accelerated cooling transforming the austenite mainly in an acicular microstructure, ductile rupture results without any cleavage nucleated in the coarse TiN particles, as occurred when the same material had a coarse ferrite-pearlite microstructure.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the growth rate and interlamellar spacing of the porosity structure of a special kind of pearlite called ortho-pearlite was analyzed and a detailed model based on the ternary phase diagram was developed.

34 citations

Journal ArticleDOI
TL;DR: In this article, the effect of pearlitic morphology on the corrosion behavior of high-carbon fully pearlitic steel in 3.5% NaCl solution was discussed, and four different types of coarse, medium, fine and very fine microstructures, respectively, were tested.
Abstract: The present work discusses the effect of pearlitic morphology on the corrosion behavior of high-carbon fully pearlitic steel in 3.5% NaCl solution. Four different types of pearlitic steels (furnace-cooled, as-received, air-cooled and forced-air-cooled) consisting of coarse, medium, fine and very fine microstructures, respectively, were tested. Electrochemical behavior of these steels was studied with the help of dynamic and linear polarization and AC impedance spectroscopic tests. The corrosion resistance improved with fineness of the microstructure in general. However, with further reduction in interlamellar spacing beyond a limit, the corrosion resistance reduced slightly. Formation of homogeneous distribution of microgalvanic cells between cementite and ferrite lamellae of fine pearlitic steel improved the corrosion resistance. However, entanglement of the lamellae of pearlite in very fine pearlitic structure as well as breaking of cementite lamellae due to finer pearlitic colonies was attributed to the higher corrosion of the forced-air-cooled steel as compared to the air-cooled steel.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the sliding wear behavior of two types medium carbon microalloyed steels containing various microstructures was investigated on a 320 mesh SiC paper at a sliding speed of 0.33m/s with a load of 6n and sliding duration of 4min under dry sliding conditions.

34 citations

Journal ArticleDOI
TL;DR: In this article, the deformation of a bare specimen of cementite is unstable immediately after the yield point, while cementite lamellae show some stability when they are layered with ferrite.
Abstract: Elasto-plastic deformations in the microstructures of pearlite are studied by finite-element analyses. Various models for the lamellar structure are made and the material properties of cementite and ferrite are established. Deformation of a bare specimen of cementite is unstable immediately after the yield point, while cementite lamellae show some stability when they are layered with ferrite. When higher values of yield stress and strain hardening are used for ferrite phase, cementite deforms well beyond the elastic range and the distribution of plastic strain is not concentrated. These results show that not only the layered structure but also the improved mechanical property of fine lamellae of ferrite contribute largely to stable deformation in the pearlite microstructure.

34 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
87% related
Alloy
171.8K papers, 1.7M citations
86% related
Grain boundary
70.1K papers, 1.5M citations
83% related
Welding
206.5K papers, 1.1M citations
81% related
Fracture mechanics
58.3K papers, 1.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023148
2022326
2021218
2020271
2019291
2018221