scispace - formally typeset
Search or ask a question
Topic

Pearlite

About: Pearlite is a research topic. Over the lifetime, 6028 publications have been published within this topic receiving 65695 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the evolution of the carbides and mechanical properties of 7Cr17MoV stainless steel used as cutlery material during cold rolling was investigated, and the results demonstrate that the microstructure of the rolled steel is composed of pearlite and spheroidal carbides.
Abstract: The evolution of the carbides and mechanical properties of 7Cr17MoV stainless steel used as cutlery material during cold rolling was investigated in this study. The results demonstrate that the microstructure of the rolled steel is composed of pearlite and spheroidal carbides. After cold rolling, the aggregation of carbides was no longer evident, and the carbides appeared to be small in size and uniformly distributed, whereas carbides in hot-rolled strips are clearly aggregated. Decreasing the thickness of the cold-rolled strips decreased the size of the carbide particles while increasing their number, which improved the particle distribution. A large number of fine, even nano-scaled carbides were observed in the material. The carbide phase, which primarily consisted of M23C6, did not change during cold rolling and annealing. The tensile strength and yield strength first decreased and then increased, and the elongation increased as the thickness of the cold-rolled strips decreased. Dimples and inclusion p...

22 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical model for the growth of a ferrite plate into a supersaturated austenite for the Fe-C system is presented in detail, in which the effects of interfacial energy, diffusion in Austenite, solute drag, coherency stresses, relaxation by interface dislocations and the finite mobility of the phase interface are taken into account simultaneously and consistently.

22 citations

Journal ArticleDOI
TL;DR: In this article, the deformation of U8 steel with a granular pearlite structure has been investigated by the method of electron microscopy, and it has been established that carbide particles are deformed through the movement of stacking faults, characterized by an α[010] partial shift in the (001) planes of cementite.
Abstract: Cementite microstructure of the U8 steel with a granular pearlite structure has been investigated by the method of electron microscopy. It has been established that, at the early stages of deformation, carbide particles are deformed through the movement of stacking faults, which are characterized by an α[010] partial shift in the (001) planes of cementite. The Burgers vector, the slip plane [010](001) of the split dislocations forming pileups, and deformation bands have been determined using gb analysis. The stacking fault energy has been estimated in a (001) cementite plane: γsf ∼ 12.8 mJ/m2. With increasing degree of deformation, an additional slip has been shown to occur in cementite by the system [100](011).

22 citations

Journal ArticleDOI
TL;DR: In this paper, two hot-rolled medium manganese steels containing 3 wt pct aluminum and 3 Wt Pct silicon were subjected to different annealing treatments and the evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent Austenite decomposition was investigated.
Abstract: Medium manganese steels alloyed with sufficient aluminum and silicon amounts contain high fractions of retained austenite adjustable to various transformation-induced plasticity/twinning-induced plasticity effects, in addition to a reduced density suitable for lightweight vehicle body-in-white assemblies. Two hot rolled medium manganese steels containing 3 wt pct aluminum and 3 wt pct silicon were subjected to different annealing treatments in the present study. The evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent austenite decomposition during quenching was investigated. Manganese content of the steels prevailed the microstructural response. The microstructure of the leaner alloy with 7 wt pct Mn (7Mn) was substantially influenced by the annealing temperature, including the variation of phase constituents, the morphology and composition of intercritical austenite, the Ms temperature and the retained austenite fraction. In contrast, the richer variant 10 wt pct Mn steel (10Mn) exhibited a substantially stable ferrite-austenite duplex phase microstructure containing a fixed amount of retained austenite which was found to be independent of the variations of intercritical annealing temperature. Austenite formation from hot band ferrite-pearlite/bainite mixtures was very rapid during annealing at 1273 K (1000 °C), regardless of Mn contents. Austenite growth was believed to be controlled at early stages by carbon diffusion following pearlite/bainite dissolution. The redistribution of Mn in ferrite and particularly in austenite at later stages was too subtle to result in a measureable change in austenite fraction. Further, the hot band microstructure of both steels contained a large fraction of coarse-grained δ-ferrite, which remained almost unchanged during intercritical annealing. A recently developed thermodynamic database was evaluated using the experimental data. The new database achieved a better agreement with the experimental results for the 7Mn steel compared with the existing commercial TCFE database; however, some discrepancy in the predicted phase fractions and compositions still existed. The phase transformation behavior of the two steels during annealing and its implication on the design of high aluminum-silicon medium manganese steels were discussed in detail.

22 citations

Journal ArticleDOI
TL;DR: In this article, a correlation is made of microstructure and fracture toughness in hypereutectic high-chromium white iron hardfacing alloys, in particular, four different matrices such as pearlite, austenite, and a mixture of pearlite and Austenite were employed by changing the ratio of Mn/Si, while the total volume fraction of carbides was fixed.
Abstract: A correlation is made of microstructure and fracture toughness in hypereutectic high-chromium white iron hardfacing alloys. In order to investigate the matrix effect of these alloys, in particular, four different matrices such as pearlite, austenite, and a mixture of pearlite and austenite were employed by changing the ratio of Mn/Si, while the total volume fraction of carbides was fixed. The hardfacing alloys were deposited twice on a mild steel plate by the self-shielding flux-cored arc-welding method. Fracture toughness was increased by increasing the volume fraction of austenite in the matrix, whereas hardness and abrasion resistance were nearly constant.In situ observation of the fracture process showed that cracks initiated at large primary carbides tended to be blocked at the austenitic matrix. This suggested that fracture toughness was controlled mainly by the amount of austenite in the matrix, thereby yielding the better toughness in the hardfacing alloy having the austenitic matrix. Considering both abrasion resistance and fracture toughness, therefore, the austenitic matrix was preferred for the high-chromium white iron hardfacing alloys.

22 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
87% related
Alloy
171.8K papers, 1.7M citations
86% related
Grain boundary
70.1K papers, 1.5M citations
83% related
Welding
206.5K papers, 1.1M citations
81% related
Fracture mechanics
58.3K papers, 1.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023148
2022326
2021218
2020271
2019291
2018221