scispace - formally typeset
Search or ask a question
Topic

Pedestrian detection

About: Pedestrian detection is a research topic. Over the lifetime, 4285 publications have been published within this topic receiving 109624 citations.


Papers
More filters
Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations

Journal ArticleDOI
TL;DR: An extensive evaluation of the state of the art in a unified framework of monocular pedestrian detection using sixteen pretrained state-of-the-art detectors across six data sets and proposes a refined per-frame evaluation methodology.
Abstract: Pedestrian detection is a key problem in computer vision, with several applications that have the potential to positively impact quality of life. In recent years, the number of approaches to detecting pedestrians in monocular images has grown steadily. However, multiple data sets and widely varying evaluation protocols are used, making direct comparisons difficult. To address these shortcomings, we perform an extensive evaluation of the state of the art in a unified framework. We make three primary contributions: 1) We put together a large, well-annotated, and realistic monocular pedestrian detection data set and study the statistics of the size, position, and occlusion patterns of pedestrians in urban scenes, 2) we propose a refined per-frame evaluation methodology that allows us to carry out probing and informative comparisons, including measuring performance in relation to scale and occlusion, and 3) we evaluate the performance of sixteen pretrained state-of-the-art detectors across six data sets. Our study allows us to assess the state of the art and provides a framework for gauging future efforts. Our experiments show that despite significant progress, performance still has much room for improvement. In particular, detection is disappointing at low resolutions and for partially occluded pedestrians.

3,170 citations

Journal ArticleDOI
TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Abstract: Due to object detection’s close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles that combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy, and optimization function. In this paper, we provide a review of deep learning-based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely, the convolutional neural network. Then, we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection, and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network-based learning systems.

3,097 citations

Journal ArticleDOI
13 Oct 2003
TL;DR: This paper describes a pedestrian detection system that integrates image intensity information with motion information, and is the first to combine both sources of information in a single detector.
Abstract: This paper describes a pedestrian detection system that integratesimage intensity information with motion information.We use a detection style algorithm that scans a detectorover two consecutive frames of a video sequence. Thedetector is trained (using AdaBoost) to take advantage ofboth motion and appearance information to detect a walkingperson. Past approaches have built detectors based onmotion information or detectors based on appearance information,but ours is the first to combine both sources ofinformation in a single detector. The implementation describedruns at about 4 frames/second, detects pedestriansat very small scales (as small as 20x15 pixels), and has avery low false positive rate.Our approach builds on the detection work of Viola andJones. Novel contributions of this paper include: i) developmentof a representation of image motion which is extremelyefficient, and ii) implementation of a state of theart pedestrian detection system which operates on low resolutionimages under difficult conditions (such as rain andsnow).

2,367 citations

Journal ArticleDOI
TL;DR: For a broad family of features, this work finds that features computed at octave-spaced scale intervals are sufficient to approximate features on a finely-sampled pyramid, and this approximation yields considerable speedups with negligible loss in detection accuracy.
Abstract: Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed explicitly. This fundamental insight allows us to design object detection algorithms that are as accurate, and considerably faster, than the state-of-the-art. The computational bottleneck of many modern detectors is the computation of features at every scale of a finely-sampled image pyramid. Our key insight is that one may compute finely sampled feature pyramids at a fraction of the cost, without sacrificing performance: for a broad family of features we find that features computed at octave-spaced scale intervals are sufficient to approximate features on a finely-sampled pyramid. Extrapolation is inexpensive as compared to direct feature computation. As a result, our approximation yields considerable speedups with negligible loss in detection accuracy. We modify three diverse visual recognition systems to use fast feature pyramids and show results on both pedestrian detection (measured on the Caltech, INRIA, TUD-Brussels and ETH data sets) and general object detection (measured on the PASCAL VOC). The approach is general and is widely applicable to vision algorithms requiring fine-grained multi-scale analysis. Our approximation is valid for images with broad spectra (most natural images) and fails for images with narrow band-pass spectra (e.g., periodic textures).

2,000 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
86% related
Feature (computer vision)
128.2K papers, 1.7M citations
86% related
Convolutional neural network
74.7K papers, 2M citations
86% related
Image segmentation
79.6K papers, 1.8M citations
84% related
Deep learning
79.8K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022428
2021255
2020378
2019509
2018440