scispace - formally typeset
Search or ask a question
Topic

Peening

About: Peening is a research topic. Over the lifetime, 5538 publications have been published within this topic receiving 73073 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the current status of research and development on laser shock processing of metals, also known as laser peening, using Q-switched high power lasers is reviewed and the influence of processing parameters on the laser-induced shock waves in metal components are discussed and analyzed.

933 citations

Journal ArticleDOI
TL;DR: In this article, a general methodology is proposed for the determination of surface residual stresses and residual plastic strains using instrumented sharp indentation, which is assumed to be equibiaxial and uniform over a depth (beneath the indented surface) which is at least several times larger than the indentation contact diameter, and the indenter load and geometry can be so chosen as to minimize or maximize the contact radius to seek the broadest range of applicability and validity of the proposed method by recourse to macro-, micro- and nanoindentation of elastoplastic

728 citations

Journal ArticleDOI
Henry Windischmann1
TL;DR: A review of the sputtered film stress literature shows that the intrinsic stress can be tensile or compressive depending on the energetics of the deposition process as discussed by the authors, and extensive experimental evidence show a direct link between the particle flux and energy striking the condensing film, which determines the nature and magnitude of the stress.
Abstract: A review of the sputtered film stress literature shows that the intrinsic stress can be tensile or compressive depending on the energetics of the deposition process. Modeling studies of film growth and extensive experimental evidence show a direct link between the energetics of the deposition process and film microstructure, which in turn determines the nature and magnitude of the stress. The fundamental quantities are the particle flux and energy striking the condensing film, which are a function of many process parameters such as pressure (discharge voltage), target/sputtering gas mass ratio, cathode shape, bias voltage, and substrate orientation. Tensile stress is generally observed in zone 1-type, porous films and is explained in terms of the grain boundary relaxation model, whereas compressive stress, observed in zone T-type, dense films, is interpreted in terms of the atomic peening mechanism. Modeling of the atomic peening mechanism and experimental data indicate that the normalized moment...

584 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the fatigue life of AISI 4340 steel, used in landing gear, under four shot peening conditions and found that relaxation of the residual stress field occurred due to the fatigue process.

476 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of DR on the low-cycle fatigue (LCF) and high cycle fatigue (HCF) behavior of a Ti-6Al-4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near-surface microstructures.
Abstract: It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly-stressed metallic components. Deep rolling (DR) is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of DR on the low-cycle fatigue (LCF) and high-cycle fatigue (HCF) behavior of a Ti–6Al–4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near-surface microstructures. Preliminary results on laser shock peened Ti–6Al–4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ∼450 °C, i.e. at a homologous temperature of ∼0.4 T/T m (where T m is the melting temperature). Based on cyclic deformation and stress/life ( S / N ) fatigue behavior, together with the X-ray diffraction and in situ transmission electron microscopy (TEM) observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti–6Al–4V at such higher temperatures, despite the almost complete relaxation of the near-surface residual stresses. In the absence of such stresses, it is shown that the near-surface microstructures, which in Ti–6Al–4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment.

466 citations


Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
88% related
Microstructure
148.6K papers, 2.2M citations
87% related
Fracture mechanics
58.3K papers, 1.3M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Grain boundary
70.1K papers, 1.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023256
2022500
2021282
2020303
2019340
2018305