scispace - formally typeset
Search or ask a question
Topic

Peening

About: Peening is a research topic. Over the lifetime, 5538 publications have been published within this topic receiving 73073 citations.


Papers
More filters
Patent
25 Mar 2009
TL;DR: In this article, a method for modifying a composite surface based on laser cladding and combining laser shock peening, and a device thereof, is described, which can reduce residual tensile stress and improve the quality of the cladded coating and prolong the service life thereof.
Abstract: The invention provides a method for modifying a composite surface based on laser cladding and combining laser shock peening, and a device thereof. The method provided by the invention is characterized in that a coaxial and powder feeding type fast axial flow CO2 laser cladding unit clads a layer of coating on the surface of a substrate; then a neophane glass impulse laser shock peening unit is used for the shock peening on the surface of the cladded coating; a measurement feedback system is utilized to detect the surface roughness and the distribution state of residual stress of the cladded coating; the precise control over the surface roughness and the residual stress of the coating is realized by a central control and processing system so as to obtain a high quality surface-cladded coating with good performance. The device comprises the coaxial and powder feeding type laser cladding unit, the laser shock peening unit, a digital control working system, the measurement feedback system and the central control and processing system, and is under integrated control by a computer. The method and the device of the invention can reduce residual tensile stress and improve the quality of the cladded coating and prolong the service life thereof.

38 citations

Journal ArticleDOI
TL;DR: In this article, the influence of low energy laser peening on fatigue lives of Ti-6Al-4V was investigated, which resulted in the formation of nanocrystallites on the surface and near surface regions with associated increase in hardness and introduction of compressive residual stress.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of process parameters such as pressure, shot size, stand-off distance, and exposure time on surface microhardness for AISI 1045 and 316L materials were investigated.
Abstract: Shot peening is widely used to improve the fatigue properties of components and structures. Residual stresses, surface roughness, and work hardening are the main beneficial effects induced in the surface layer from shot peening, which depend on the correct choice of the peening parameters. In this investigation, experiments were designed using the full factorial design of experiment (DOE) technique and an air blast type of shot peening machine. Effects of process parameters such as pressure, shot size, stand-off distance, and exposure time on surface microhardness for AISI 1045 and 316L materials were investigated. An ANOVA was carried out to identify the significant peening parameters. In the case of 316L material, the maximum surface hardness was found to be in the range of 450–824 Hv, whereas it was found to be in the range of 314–360 Hv for AISI 1045. A critical assessment was made so as to understand the variation of microhardness in the direction of peening. Empirical equations between the peening parameters and the surface microhardness for both materials were developed, which are useful in predicting the surface microhardness. It is believed that this technique could prove beneficial in industries for reduction of performance variation and cost and to increase productivity.

38 citations

Journal ArticleDOI
TL;DR: In this article, a finite element modeling approach was adopted by considering the transient, dynamic nature of droplets for analysis, which made use of Reichardt's theory for predicting the velocity distribution of the droplets and liquid impact theory to predict the impact pressure and duration of impact of high velocity droplets.
Abstract: In this paper, a novel approach, proposed for predicting residual stresses induced on materials treated with high pressure water jets, i.e. water jet peening, is presented. This approach considers the impact pressure distribution due to high velocity droplets impinging on the material surface instead of stationary pressure distribution considered in Trans ASME J Eng Mat Technol 121 (1999) 336 for prediction of residual stresses on water jet peened surfaces. It makes use of Reichardt’s theory for predicting the velocity distribution of droplets and liquid impact theory for predicting the impact pressure and duration of impact of high velocity droplets. For predicting residual stresses on the surface and sub surface of material subjected to water jet peening, finite element modelling approach was adopted by considering the transient, dynamic nature of droplets for analysis. The effectiveness of the proposed approach was demonstrated by comparing the predicted residual stresses with those predicted employing the approach proposed in Trans ASME J Eng Mat Technol 121 (1999) 336. Finally, the practical relevance of the proposed approach was shown by comparing the predicted results with the experimental results obtained by water peening of 6063-T6 aluminium alloy.

38 citations

Patent
13 May 1997
TL;DR: In this article, the authors describe a method and apparatus for peening objects by means of ultrahigh velocity water jet, which includes means for holding and producing relative motion in three dimensions of both the workpiece and the jet.
Abstract: The invention describes a method and apparatus for peening objects by means of ultrahigh velocity waterjet. The apparatus includes means for holding and producing relative motion in three dimensions of both the workpiece and the jet. Control means are provided to allow uniform and variable depth peening of complex shapes and automatic variations in relative speed, standoff distance, angle and pressure. The method includes the use of entrained disappearing particles in the waterjet to facilitate peening.

38 citations


Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
88% related
Microstructure
148.6K papers, 2.2M citations
87% related
Fracture mechanics
58.3K papers, 1.3M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Grain boundary
70.1K papers, 1.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023256
2022500
2021282
2020303
2019340
2018305