scispace - formally typeset
Search or ask a question
Topic

Peening

About: Peening is a research topic. Over the lifetime, 5538 publications have been published within this topic receiving 73073 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the crack growth rate in peened aluminium alloys 7010 and 8090 is modelled by assuming the effect of residual stress reduces to the equivalent stress ratio, and the predicted results agree well with the experimental data.
Abstract: — The crack initiation lives of peened specimens of aluminium alloys 7010 and 8090 are shorter than those of unpeened specimens. This is caused by the acceleration of crack initiation due to stress concentration in the rough peened surface, especially at fold-like defects. The crack growth rate in peened specimens is significantly reduced with increasing ΔK, i.e. with increasing crack length. At a crack length of approximately 0.3 mm this trend is reversed and the crack growth rate rapidly increases and attains the same level of crack growth rate as that in unpeened specimens. The point of smallest crack growth rate roughly corresponds to the point of maximum residual stress. The crack growth rate in a peened specimen has been modelled by assuming the effect of residual stress reduces to the equivalent stress ratio. The predicted results agree well with the experimental data.

81 citations

Journal ArticleDOI
TL;DR: In this article, the influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated.
Abstract: The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions.

81 citations

Patent
14 Oct 1999
TL;DR: In this paper, a method for repairing damage to an airfoil is described, which provides for the removal of a section of the air-foil that substantially encompasses the damaged area, which consequently leaves a void and a cut-away surface.
Abstract: A method is disclosed for repairing damage to an airfoil. The method provides for the removal of a section of the airfoil that substantially encompasses the damaged area, which consequently leaves a void and a cut-away surface in the airfoil. A replacement piece larger than the residual void is provided for use in replacing the section removed from the airfoil. A joining operation welds or otherwise joins the replacement piece to the airfoil at the cut-away surface to form a joined airfoil. The joined airfoil has a seam between the airfoil and the replacement piece. At least a portion of the seam is processed by laser shock peening to induce compressive residual stresses therein.

80 citations

Journal ArticleDOI
TL;DR: In this paper, an integrated modeling/simulation and experimental approach was employed to represent the nonlinear constitutive behavior under both LSP and thermal loads, and the activation enthalpy of the relaxation process for laser shock peened Ti-6Al-4V was determined to be in the range of 0.71 eV to 1.37 eV.
Abstract: Laser shock peening (LSP) induced residual stresses in Ti–6Al–4V, and their thermal relaxation due to short-term exposure at elevated temperatures are investigated by an integrated modeling/simulation and experimental approach. A rate and temperature-dependent plasticity model in the form of Johnson–Cook (JC) has been employed to represent the nonlinear constitutive behavior under both LSP and thermal loads. By comparing the simulation results with experimental data, model parameters for Ti–6Al–4V are first calibrated and subsequently applied in analyzing the thermal stability of the residual stress in LSP-treated Ti–6Al–4V. The analysis shows that the magnitude of stress relaxation increases with the increase of applied temperature due to material softening. Most of stress relaxation occurs before 10 min to 20 min exposure in this study, and stress distribution becomes more uniform after thermal exposure. An analytical model based on the Zener–Wert–Avrami formula is then developed based on the simulation results. The activation enthalpy of the relaxation process for laser shock peened Ti–6Al–4V is determined to be in the range of 0.71 eV to 1.37 eV.

80 citations

Journal ArticleDOI
TL;DR: In this article, a peak aged nickel based superalloy Inconel 718 was subjected to ultrasonic shot peening for different durations of 45, 60 and 90 min.

80 citations


Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
88% related
Microstructure
148.6K papers, 2.2M citations
87% related
Fracture mechanics
58.3K papers, 1.3M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Grain boundary
70.1K papers, 1.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023256
2022500
2021282
2020303
2019340
2018305