scispace - formally typeset
Search or ask a question
Topic

Peening

About: Peening is a research topic. Over the lifetime, 5538 publications have been published within this topic receiving 73073 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines by introducing deep stable layers of compressive residual stress and avoids the generally cost prohibitive alternative of modifying either material or design.
Abstract: Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine operating temperatures.

62 citations

Journal ArticleDOI
TL;DR: In this article, the effects of peening and re-peening upon the fatigue fracture behavior of metallic components in the presence of shot peening residual stresses were examined. But, only the steel specimens showed further life enhancement.

62 citations

Journal ArticleDOI
TL;DR: In this paper, laser shock peening (LSP) was applied to improve the mechanical properties of the AZ31B magnesium (Mg) alloy, which increased the hardness and yield strength of the Mg alloy.
Abstract: Mg alloys offer potential advantages over conventional biomedical implant materials because of their biodegradability and biocompatibility, but could be limited by their poor mechanical properties. In this study, laser shock peening (LSP), a surface processing technique, was applied to improve the mechanical properties of the AZ31B magnesium (Mg) alloy. It was demonstrated that LSP increased the hardness and yield strength of the Mg alloy. Due to the hardening, LSP significantly improved the wear resistance and fatigue performance of the Mg alloy. In addition, immersion tests carried out in cell culture medium revealed that LSP did not significantly increase Mg2+ release and weight loss. Furthermore, an in vitro cell culture study showed that the LSP-treated samples have cell-compatibility comparable to untreated samples. Thus, the LSP technique could, with further study, advance the clinical utility of Mg alloys in the orthopedic field.

62 citations

Journal ArticleDOI
TL;DR: In this paper, a residual stress analysis was performed using synchrotron radiation and a hole drilling technique to investigate the retardation effect of LSP residual stresses on the Fatigue crack propagation (FCP).

61 citations

Journal ArticleDOI
TL;DR: In this article, an analytical model for the residual stresses formed during the shot peening process is analyzed, and two modifications are adopted: the hertzian pressure is considered as a dynamic load and the Ramberg-Osgood and/or Ludwick constitutive models of the stress curve is adopted to describe the plastic behaviour of the target material.

61 citations


Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
88% related
Microstructure
148.6K papers, 2.2M citations
87% related
Fracture mechanics
58.3K papers, 1.3M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Grain boundary
70.1K papers, 1.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023256
2022500
2021282
2020303
2019340
2018305