scispace - formally typeset
Search or ask a question
Topic

Peening

About: Peening is a research topic. Over the lifetime, 5538 publications have been published within this topic receiving 73073 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a combination of microstructure analysis, microhardness measurements, and profilometry was used in determining the depth of plastic deformation and surface texture that result from the material removal process.
Abstract: An experimental study was conducted to determine the influence of high-pressure waterjet (WJ) peening and abrasive waterjet (AWJ) machining on the surface integrity and texture of metals. A combination of microstructure analysis, microhardness measurements, and profilometry were used in determining the depth of plastic deformation and surface texture that result from the material removal process. The measurement and evaluation of residual stress was conducted with X-ray diffraction. The residual stress fields resulting from treatment were analyzed to further distinguish the influence of material properties on the surface integrity. It was found that waterjet peening induces plastic deformation at the surface layer of metals as good as shot peening. The degree of plastic deformation and the state of material surface were found to be strongly dependent on the peening conditions applied.

53 citations

Journal ArticleDOI
TL;DR: In this article, the effect of shot peening media on fatigue performance of the high-strength wrought magnesium alloy AZ80 has been investigated at Almen intensities ranging from 0.04 to 0.4mmN.

53 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical model has been proposed to estimate the nucleation rate in metallic materials after WLSP, which is based on the assumption that dynamic aging can be assisted by the dense dislocation structures and warm temperature.
Abstract: Warm laser shock peening (WLSP) is an innovative thermomechanical processing technique, which combines the advantages of laser shock peening (LSP) and dynamic aging (DA). It has been found that a unique microstructure with highly dense nanoscale precipitates surrounded by dense dislocation structures is generated by WLSP. In order to understand the nucleation mechanism of the highly dense precipitates during WLSP, aluminum alloy 6061 (AA6061) has been used by investigating the WLSP process with experiments and analytical modeling. An analytical model has been proposed to estimate the nucleation rate in metallic materials after WLSP. The effects of the processing temperature and high strain rate deformation on the activation energy of nucleation have been considered in this model. This model is based on the assumption that DA during WLSP can be assisted by the dense dislocation structures and warm temperature. The effects of the working temperature and dislocation density on the activation energy of precipitation have been investigated. This model is validated by a series of experiments and characterizations after WLSP. The relationships between the processing conditions, the nucleation density of precipitates and the defect density have been investigated.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the surface integrity of TC17 titanium alloy treated by LSP with innovative square laser spot was investigated, and the results showed that laser pulse energy greatly influences surface morphology and surface residual stress around single-spot treated areas.

52 citations

Patent
26 Jun 2000
TL;DR: In this article, a method and apparatus for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece is provided, where a tamping layer of water is flowed over the absorptive layer.
Abstract: A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

52 citations


Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
88% related
Microstructure
148.6K papers, 2.2M citations
87% related
Fracture mechanics
58.3K papers, 1.3M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Grain boundary
70.1K papers, 1.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023256
2022500
2021282
2020303
2019340
2018305