scispace - formally typeset
Search or ask a question
Topic

Peening

About: Peening is a research topic. Over the lifetime, 5538 publications have been published within this topic receiving 73073 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of microstructure variation on the development of mechanical properties in friction stir welded joints of 6061-T6 aluminum alloy, which were subsequently processed by shot peening (SP), was examined.

48 citations

Journal ArticleDOI
Binod Dhakal1, S. Swaroop1
TL;DR: In this paper, a laser shock peening (LSP) of 6061-T6 aluminum alloy was performed and parametric effects post LSP on mechanical aspects and microstructural evolution are meticulously studied using various means of characterization techniques such as residual stress analysis, surface roughness, Vickers microhardness, tensile testing, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and electron back scattered diffraction(EBSD).

48 citations

Journal ArticleDOI
TL;DR: In this paper, the residual stress relaxation during the fatigue life of shot peened high-strength aluminum alloys was investigated, and the elastic-plastic response of the superficial layers affected by the shot peening treatments was derived through reverse strain axial testing combined with microhardness tests and implemented in the finite element (FE) model.
Abstract: The mechanism of the residual stress relaxation during the fatigue life of shot peened high-strength aluminum alloys was investigated. Experiments were conducted on specimens subjected to three different shot peening treatments and tested under reverse bending fatigue. x-ray diffraction (XRD) measurements were carried out to determine the initial and stabilized residual stress fields. The residual stress field created by the surface treatments has been introduced into a finite element (FE) model by means of a fictitious temperature distribution. The elastic-plastic response of the superficial layers affected by the shot peening treatments has been derived through reverse strain axial testing combined with microhardness tests and implemented in the FE model. The proposed numerical/experimental approach is able to satisfactorily predict the residual stress field evolution. Notably, relaxation has been correctly simulated in the low-cycle fatigue regime and imputed to plastic flow in compression when the superposition of compressive residual and bending stresses exceeds the local cyclic yield strength of the material. Conversely the residual stress field remains stable at load levels corresponding to the 5 × 10 6 cycles fatigue endurance.

48 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between the residual stress state and the substrate thickness ratio was investigated on thick Inconel 718 thermal spray coatings on a substrate of the same type.
Abstract: Residual stress buildup in thick thermal spray coatings is a property of concern. The adhesion of these coatings to the substrate is influenced by residual stresses that are generated during the coating deposition process. In the HVOF spray process, significant peening stresses are generated during the impact of semimolten particles on the substrate. The combination of these peening stresses together with quenching and thermal mismatch stresses that arise after deposition can be of significant importance. Both numerical method, i.e., Finite Element Method (FEM), and experimental methods, i.e., the Modified Layer Removal Method (MLRM) and Neutron Diffraction, to calculate peening and quenching stresses have been utilized in this work. The investigation was performed on thick Inconel 718 coatings on Inconel 718 substrates. Combined, these numerical and experimental techniques yield a deeper understanding of residual stress formation in the HVOF process and thus a tool for process optimization. The relationship between the stress state and deposit/substrate thickness ratio is given particular interest.

48 citations

Journal ArticleDOI
TL;DR: In this article, an explicit finite element analysis is carried out to study the effect of molten particle impingement using deposition of an HVOF sprayed copper coating on a copper substrate as an example system.
Abstract: The application of thick high-velocity oxyfuel (HVOF) coatings on metallic parts has been widely accepted as a solution to improve their wear properties. The adherence of these coatings to the substrate is strongly influenced by the residual stresses generated during the coating deposition process. In an HVOF spraying process, due to the relatively low processing temperature, significant peening stresses are generated during impact of molten and semimolten particles on the substrate. At present, finite-element (FE) models of residual stress generation for the HVOF process are not available due to the increased complexities in modeling the stresses generated due to the particle impact. In this work, an explicit FE analysis is carried out to study the effect of molten particle impingement using deposition of an HVOF sprayed copper coating on a copper substrate as an example system. The results from the analysis are subsequently used in a thermomechanical FE model to allow the development of the residual stresses in these coatings to be modeled.

47 citations


Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
88% related
Microstructure
148.6K papers, 2.2M citations
87% related
Fracture mechanics
58.3K papers, 1.3M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Grain boundary
70.1K papers, 1.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023256
2022500
2021282
2020303
2019340
2018305