scispace - formally typeset
Search or ask a question
Topic

Penetration depth

About: Penetration depth is a research topic. Over the lifetime, 7464 publications have been published within this topic receiving 116963 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The current results demonstrate that specific regions of interest can be accessed and preserved throughout the sample-preparation process and that this preparation method leads to high-quality atom probe analysis of such nano-structures.

1,412 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the properties of indentation hardness on the sub-micrometre scale in nickel, gold and silicon and showed that indent areas and therefore hardness can be determined from penetration depth with reasonable accuracy, and that elastic relaxation can be quantitatively understood.
Abstract: In this paper we investigate the properties of indentation hardness on the sub-micrometre scale in nickel, gold and silicon. Indenter penetration depths as low as 20 nm are used. The area of the indents is determined by electron microscopy, and thus the Meyer hardness calculated. The indenter penetration is monitored continuously during loading and unloading. We show that indent areas, and therefore hardness, may be determined from penetration depth with reasonable accuracy, and that elastic relaxation can be quantitatively understood. We discuss the marked increase of indentation hardness with decreasing indent size on the sub-micrometre scale. Small indents in silicon showed no evidence of cracking, but did show unusual deformation characteristics.

883 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the properties of the triangular flux-line lattice (FLL), which is more or less perturbed by material inhomogeneities that pin the flux lines, and also by thermal fluctuations.
Abstract: Magnetic flux can penetrate a type-II superconductor in the form of Abrikosov vortices (also called flux lines, flux tubes, or fluxons) each carrying a quantum of magnetic flux phi 0=h/2e. These tiny vortices of supercurrent tend to arrange themselves in a triangular flux-line lattice (FLL), which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-Tc superconductors (HTSCs) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSCs the FLL is very soft mainly because of the large magnetic penetration depth lambda . The shear modulus of the FLL is c66~1/ lambda 2, and the tilt modulus c44(k)~(1+k2 lambda 2)-1 is dispersive and becomes very small for short distortion wavelengths 2 pi /k<< lambda . This softness is enhanced further by the pronounced anisotropy and layered structure of HTSCs, which strongly increases the penetration depth for currents along the c axis of these (nearly uniaxial) crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may `melt` the FLL and cause thermally activated depinning of the flux lines or ofthe two-dimensional `pancake vortices` in the layers. Various phase transitions are predicted for the FLL in layered HTSCs. Although large pinning forces and high critical currents have been achieved, the small depinning energy so far prevents the application of HTSCs as conductors at high temperatures except in cases when the applied current and the surrounding magnetic field are small.

866 citations

Journal ArticleDOI
TL;DR: In this article, a pump-pump-probe technique was introduced which allows to study hot electron relaxation by probing the reflectivity in thermal equilibrium between electrons and lattice.

842 citations

Journal ArticleDOI
TL;DR: The utility of impedance spectroscopy in investigations of hematite electrodes is demonstrated to provide key parameters of photoelectrodes with a relatively simple measurement, and new evidence of the accumulation of holes in surface states at the semiconductor/electrolyte interface, which are responsible for water oxidation.
Abstract: Hematite (α-Fe2O3) constitutes one of the most promising semiconductor materials for the conversion of sunlight into chemical fuels by water splitting. Its inherent drawbacks related to the long penetration depth of light and poor charge carrier conductivity are being progressively overcome by employing nanostructuring strategies and improved catalysts. However, the physical–chemical mechanisms responsible for the photoelectrochemical performance of this material (J(V) response) are still poorly understood. In the present study we prepared thin film hematite electrodes by atomic layer deposition to study the photoelectrochemical properties of this material under water-splitting conditions. We employed impedance spectroscopy to determine the main steps involved in photocurrent production at different conditions of voltage, light intensity, and electrolyte pH. A general physical model is proposed, which includes the existence of a surface state at the semiconductor/liquid interface where holes accumulate. T...

831 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
83% related
Raman spectroscopy
122.6K papers, 2.8M citations
80% related
Dielectric
169.7K papers, 2.7M citations
80% related
Laser
353.1K papers, 4.3M citations
80% related
Graphene
144.5K papers, 4.9M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022363
2021195
2020247
2019253
2018223