scispace - formally typeset
Search or ask a question

Showing papers on "Penicillium griseofulvum published in 2004"


Journal ArticleDOI
TL;DR: New isolates of Penicillium fungi with high mineral phosphate solubilizing activity are identified, being investigated for the ability to increase crop production on strong P-retaining soils in Australia.
Abstract: In this study we found that Penicillium spp. exhibiting P-solubilizing activity are common both on and in the roots of wheat plants grown in southern Australian agricultural soils. From 2,500 segments of washed and surface-disinfested root pieces, 608 and 223 fungi were isolated on a selective medium, respectively. All isolates were screened for P solubilization on solid medium containing hydroxyapatite (HA); 47 isolates (5.7%) solubilized HA and were identified as isolates of Penicillium or its teleomorphs. These isolates were evaluated for solubilization of Idaho rock phosphate (RP) in liquid culture. Penicillium bilaiae strain RS7B-SD1 was the most effective, mobilizing 101.7 mg P l−1 after 7 days. Other effective isolates included Penicillium simplicissimum (58.8 mg P l−1), five strains of Penicillium griseofulvum (56.1–47.6 mg P l−1), Talaromyces flavus (48.6 mg P l−1) and two unidentified Penicillium spp. (50.7 and 50 mg P l−1). A newly isolated strain of Penicillium radicum (KC1-SD1) mobilized 43.3 mg P l−1. RP solubilization, biomass production and solution pH for P. bilaiae RS7B-SD1, P. radicum FRR4718 or Penicillium sp. 1 KC6-W2 was determined over time. P. bilaiae RS7B-SD1 solubilized the greatest amount of RP (112.7 mg P l−1) and had the highest RP-solubilizing activity per unit of biomass produced (up to 603.2 μg P l−1 mg biomass−1 at 7 days growth). This study has identified new isolates of Penicillium fungi with high mineral phosphate solubilizing activity. These fungi are being investigated for the ability to increase crop production on strong P-retaining soils in Australia.

349 citations


Journal ArticleDOI
TL;DR: Multivariate analysis of fungi complex composition showed that the frequency of fungal was species significantly influenced by the kind of seed, which may heighten the risk of occurrence of mycotoxins in food and feed stuffs and cause mixed contamination by fungal and mite allergens.
Abstract: Toxigenic and allergen-producing fungi represent a serious hazard to human food and animal feed safety. Ninety-four fungal species were isolated from mite-infested samples of seeds taken from Czech seed stores. Fungi were isolated from the surface of four kinds of seeds (wheat, poppy, lettuce, and mustard) and from the gut and external surface of five species of mites (i.e., Acarus siro L., 1758, Caloglyphus rhizoglyphoides (Zachvatkin, 1973), Lepidoglyphus destructor (Schrank, 1781), Tyrophagus putrescentnae (Schrank, 1781) and Cheyletus malaccensis Oudemans 1903) separately. Multivariate analysis of fungi complex composition showed that the frequency of fungal was species significantly influenced by the kind of seed. Fungal frequencies differed between mites gut and exoskeleton surface and between the surfaces of mites and seeds. Three groups of fungal species were recognized: 1) mite surface-associated fungi: Penicillium brevicompactum, Alternaria alternata, and Aspergillus versicolor; 2) mite surface- and seed-associated fungi: Aspergillus niger, Penicillium crustosum, Penicillium aurantiogriseum, Penicillium chrysogenum, and Aspergillus flavus; and 3) seed-associated fungi: Cladosporium herbarum, Mucor dimorphosporus f. dimorphosporus, Botrytis cinerea, Penicillium griseofulvum, and Eurotium repens. Mite-carried species of microfungi are known to produce serious mycotoxins (e.g., aflatoxin B1, cyclopiazonic acid, sterigmatocystin, ochratoxin A, and nephrotoxic glycopeptides) as well as allergen producers (e.g., A. alternata and P. brevicompactum). Storage mites may play an important role in the spread of some medically hazardous micromycetes. In addition, these mite-fungi associations may heighten the risk of occurrence of mycotoxins in food and feed stuffs and cause mixed contamination by fungal and mite allergens.

86 citations


Journal ArticleDOI
TL;DR: The present work investigates SSF for griseofulvin production, optimization of its process parameters vis‐à‐vis the conventional submerged fermentation and its downstream processing from the same.
Abstract: Griseofulvin is a secondary metabolite produced from fungal species that have morphology suitable for solid-state fermentation (SSF). Reports on production of griseofulvin by SSF are scarce. The present work investigates SSF for griseofulvin production, optimization of its process parameters vis-a-vis the conventional submerged fermentation and its downstream processing from the same. Rice bran adjusted to an initial moisture content (IMC) of 50% (v/w) inoculated with 1 mL of a suspension of 10(6) spores/mL under agitation at 250 rpm containing the modified Czapek-Dox medium and additional 0.1% choline chloride as a precursor gave a yield of griseofulvin in 9 days that was comparable to submerged fermentation after 28 days. The yield of griseofulvin (microg/g dry biomass) was comparable in SSF and submerged fermentation. The biomass was estimated by estimation of chitin. Discussions on the effect of each parameter in SSF have also been included.

23 citations


Journal ArticleDOI
TL;DR: The gibberellins (GAs) play important roles in plant growth and development and the amount of each GA in the medium was measured by gas chromatography-mass spectrometer (GC-MS) to determine the productivity of GAs and P. griseofulvum KNU5379 was shown to produce in 25 ml of liquid medium.
Abstract: The gibberellins (GAs) play important roles in plant growth and development. Twenty three fungi were isolated from the roots of Lindera obtusiloba and Vaccinium koreanum. The numbers of GA-producing fungi were six strains from Lindera obtusiloba and four strains from Vaccinium koreanum. The fungi with GAs-producing activity were incubated for seven days in 40 ml of Czapek`s liquid medium at , 120 rpm, and the amount of each GA in the medium was measured by gas chromatography-mass spectrometer (GC-MS) to determine the productivity of GAs. Penicillium griseofulvum KNU5379 produced more GA in case of than Neurospora crassa known as a GAs-producing fungus. P. griseofulvum KNU5379 was shown to produce in 25 ml of liquid medium. Bioassay using culture fluid of GAs-production fungi was performed on rice sprout.

8 citations