scispace - formally typeset
Search or ask a question

Showing papers on "Peptide sequence published in 2002"


Journal ArticleDOI
TL;DR: The primary and secondary structures of β‐amyloid that are involved in its in vitro assembly into neurotoxic peptide aggregates are defined and may underlie both its pathological deposition and subsequent degenerative effects in Alzheimer's disease.
Abstract: The neurodegeneration of Alzheimer's disease has been theorized to be mediated, at least in part, by insoluble aggregates of beta-amyloid protein that are widely distributed in the form of plaques throughout brain regions affected by the disease. Previous studies by our laboratory and others have demonstrated that the neurotoxicity of beta-amyloid in vitro is dependent upon its spontaneous adoption of an aggregated structure. In this study, we report extensive structure-activity analyses of a series of peptides derived from both the proposed active fragment of beta-amyloid, beta 25-35, and the full-length protein, beta 1-42. We examine the effects of amino acid residue deletions and substitutions on the ability of beta-amyloid peptides to both form sedimentable aggregates and induce toxicity in cultured hippocampal neurons. We observe that significant levels of peptide aggregation are always associated with significant beta-amyloid-induced neurotoxicity. Further, both N- and C-terminal regions of beta 25-35 appear to contribute to these processes. In particular, significant disruption of peptide aggregation and toxicity result from alterations in the beta 33-35 region. In beta 1-42 peptides, aggregation disruption is evidenced by changes in both electrophoresis profiles and fibril morphology visualized at the light and electron microscope levels. Using circular dichroism analysis in a subset of peptides, we observed classic features of beta-sheet secondary structure in aggregating, toxic beta-amyloid peptides but not in nonaggregating, nontoxic beta-amyloid peptides. Together, these data further define the primary and secondary structures of beta-amyloid that are involved in its in vitro assembly into neurotoxic peptide aggregates and may underlie both its pathological deposition and subsequent degenerative effects in Alzheimer's disease.

725 citations


Journal ArticleDOI
Chris Kiani1, Liwen Chen1, Yaojiong Wu1, Albert Yee1, Burton B. Yang1 
TL;DR: ABSTRACTAggrecan is the major proteoglycan in the articular cartilage because it provides a hydrated gel structure (via its interaction with hyaluronan and link protein) that endows the cartilage with load-bearing properties and is crucial in chondroskeletal morphogenesis during development.
Abstract: Aggrecan is the major proteoglycan in the articular cartilage. This molecule is important in the proper functioning of articular cartilage because it provides a hydrated gel structure (via its interaction with hyaluronan and link protein) that endows the cartilage with load-bearing properties. It is also crucial in chondroskeletal morphogenesis during development. Aggrecan is a multimodular molecule expressed by chondrocytes. Its core protein is composed of three globular domains (G1, G2, and G3) and a large extended region (CS) between G2 and G3 for glycosaminoglycan chain attachment. G1 comprises the amino terminus of the core protein. This domain has the same structural motif as link protein. Functionally, the G1 domain interacts with hyaluronan acid and link protein, forming stable ternary complexes in the extracellular matrix. G2 is homologous to the tandem repeats of G1 and of link protein and is involved in product processing. G3 makes up the carboxyl terminus of the core protein. It enhances glycosaminoglycan modification and product secretion. Aggrecan plays an important role in mediating chondrocyte-chondrocyte and chondrocyte-matrix interactions through its ability to bind hyaluronan.

631 citations


Journal ArticleDOI
TL;DR: This work describes a process for the analysis of posttranslational modifications that is simple, robust, general, and can be applied to complicated protein mixtures and lens tissue from a patient with congenital cataracts.
Abstract: Large-scale genomics has enabled proteomics by creating sequence infrastructures that can be used with mass spectrometry data to identify proteins. Although protein sequences can be deduced from nucleotide sequences, posttranslational modifications to proteins, in general, cannot. We describe a process for the analysis of posttranslational modifications that is simple, robust, general, and can be applied to complicated protein mixtures. A protein or protein mixture is digested by using three different enzymes: one that cleaves in a site-specific manner and two others that cleave nonspecifically. The mixture of peptides is separated by multidimensional liquid chromatography and analyzed by a tandem mass spectrometer. This approach has been applied to modification analyses of proteins in a simple protein mixture, Cdc2p protein complexes isolated through the use of an affinity tag, and lens tissue from a patient with congenital cataracts. Phosphorylation sites have been detected with known stoichiometry of as low as 10%. Eighteen sites of four different types of modification have been detected on three of the five proteins in a simple mixture, three of which were previously unreported. Three proteins from Cdc2p isolated complexes yielded eight sites containing three different types of modifications. In the lens tissue, 270 proteins were identified, and 11 different crystallins were found to contain a total of 73 sites of modification. Modifications identified in the crystallin proteins included Ser, Thr, and Tyr phosphorylation, Arg and Lys methylation, Lys acetylation, and Met, Tyr, and Trp oxidations. The method presented will be useful in discovering co- and posttranslational modifications of proteins.

584 citations


Journal ArticleDOI
21 Jun 2002-Science
TL;DR: Human SPP is identified as a polytopic membrane protein with sequence motifs characteristic of the presenilin-type aspartic proteases that promote intramembrane proteolysis to release biologically important peptides.
Abstract: Signal peptide peptidase (SPP) catalyzes intramembrane proteolysis of some signal peptides after they have been cleaved from a preprotein. In humans, SPP activity is required to generate signal sequence-derived human lymphocyte antigen-E epitopes that are recognized by the immune system, and to process hepatitis C virus core protein. We have identified human SPP as a polytopic membrane protein with sequence motifs characteristic of the presenilin-type aspartic proteases. SPP and potential eukaryotic homologs may represent another family of aspartic proteases that promote intramembrane proteolysis to release biologically important peptides.

520 citations


Journal ArticleDOI
TL;DR: Findings suggest a direct antimicrobial role for platelets as they are activated to release peptides in response to trauma or mediators of inflammation.
Abstract: Platelets share structural and functional similarities with granulocytes known to participate in antimicrobial host defense. To evaluate the potential antimicrobial activities of platelet proteins, normal human platelets were stimulated with human thrombin in vitro. Components of the stimulated-platelet supernatants were purified to homogeneity by reversed-phase high-performance liquid chromatography. Purified peptides with inhibitory activity against Escherichia coli ML35 in an agar diffusion antimicrobial assay were characterized by mass spectrometry, amino acid analysis, and sequence determination. These analyses enabled the identification of seven thrombin-releasable antimicrobial peptides from human platelets: platelet factor 4 (PF-4), RANTES, connective tissue activating peptide 3 (CTAP-3), platelet basic protein, thymosin β-4 (Tβ-4), fibrinopeptide B (FP-B), and fibrinopeptide A (FP-A). With the exception of FP-A and FP-B, all peptides were also purified from acid extracts of nonstimulated platelets. The in vitro antimicrobial activities of the seven released peptides were further tested against bacteria (E. coli and Staphylococcus aureus) and fungi (Candida albicans and Cryptococcus neoformans). Each peptide exerted activity against at least two organisms. Generally, the peptides were more potent against bacteria than fungi, activity was greater at acidic pHs, and antimicrobial activities were dose dependent. Exceptions to these observations were observed with PF-4, which displayed a bimodal dose-response relationship in microbicidal assays, and Tβ-4, which had greater activity at alkaline pHs. At concentrations at which they were individually sublethal, PF-4 and CTAP-3 exerted synergistic microbicidal activity against E. coli. Collectively, these findings suggest a direct antimicrobial role for platelets as they are activated to release peptides in response to trauma or mediators of inflammation.

518 citations


Journal ArticleDOI
TL;DR: Evidence is provided that after cleavage by signal peptidase, the signal peptide is further processed by the intramembrane‐cleaving protease SPP that promotes the release of core protein from the ER membrane, then free for subsequent trafficking to lipid droplets.
Abstract: Hepatitis C virus (HCV) is the major causative pathogen associated with liver cirrhosis and hepatocellular carcinoma. The virus has a positive-sense RNA genome encoding a single polyprotein with the virion components located in the N-terminal portion. During biosynthesis of the polyprotein, an internal signal sequence between the core protein and the envelope protein E1 targets the nascent polypeptide to the endoplasmic reticulum (ER) membrane for translocation of E1 into the ER. Following membrane insertion, the signal sequence is cleaved from E1 by signal peptidase. Here we provide evidence that after cleavage by signal peptidase, the signal peptide is further processed by the intramembrane-cleaving protease SPP that promotes the release of core protein from the ER membrane. Core protein is then free for subsequent trafficking to lipid droplets. This study represents an example of a potential role for intramembrane proteolysis in the maturation of a viral protein.

487 citations


Journal ArticleDOI
30 Mar 2002-Virology
TL;DR: The high percentage of sequence identity between APV and hMPV, their similar genomic organization (3'-N-P-M-F-M2-SH-G-L-5'), and phylogenetic analyses provide evidence for the proposed classification of h MPV as the first mammalian metapneumovirus.

425 citations


Journal ArticleDOI
TL;DR: Comparison of genomic and cDNA clones for the human 5‐HT6 receptor reveals an RsaI restriction fragment length polymorphism within the coding region, suggesting that these may be closely linked.
Abstract: We describe the cloning and characterization of a human 5-HT6 serotonin receptor. The open reading frame is interrupted by two introns in positions corresponding to the third cytoplasmic loop and the third extracellular loop. The human 5-HT6 cDNA encodes a 440-amino-acid polypeptide whose sequence diverges significantly from that published for the rat 5-HT6 receptor. Resequencing of the rat cDNA revealed a sequencing error producing a frame shift within the open reading frame. The human 5-HT6 amino acid sequence is 89% similar to the corrected rat sequence. The recombinant human 5-HT6 receptor is positively coupled to adenylyl cyclase and has pharmacological properties similar to the rat receptor with high affinity for several typical and atypical antipsychotics, including clozapine. The receptor is expressed in several human brain regions, most prominently in the caudate nucleus. The gene for the receptor maps to the human chromosome region 1p35-p36. This localization overlaps that established for the serotonin 5-HT1D alpha receptor, suggesting that these may be closely linked. Comparison of genomic and cDNA clones for the human 5-HT6 receptor also reveals an Rsal restriction fragment length polymorphism within the coding region.

403 citations


Journal ArticleDOI
TL;DR: It is found that purified recombinant sortase hydrolyzed peptides bearing an LPXTG motif at the peptide bond between threonine and glycine, suggesting that sortase catalyzed the transpeptidation reaction of surface protein anchoring via the formation of a thioester acyl-enzyme intermediate.

369 citations


Journal ArticleDOI
TL;DR: The results suggest that AS2 functions in the transcription of a certain gene(s) in plant nuclei and thereby controls the formation of a symmetric flat leaf lamina and the establishment of a prominent midvein and other patterns of venation.
Abstract: The ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana is involved in the establishment of the leaf venation system, which includes the prominent midvein, as well as in the development of a symmetric lamina. The gene product also represses the expression of class 1 knox homeobox genes in leaves. We have characterized the AS2 gene, which appears to encode a novel protein with cysteine repeats (designated the C-motif) and a leucine-zipper-like sequence in the amino-terminal half of the primary sequence. The Arabidopsis genome contains 42 putative genes that potentially encode proteins with conserved amino acid sequences that include the C-motif and the leucine-zipper-like sequence in the amino-terminal half. Thus, the AS2 protein belongs to a novel family of proteins that we have designated the AS2 family. Members of this family except AS2 also have been designated ASLs (AS2-like proteins). Transcripts of AS2 were detected mainly in adaxial domains of cotyledonary primordia. Green fluorescent protein-fused AS2 was concentrated in plant cell nuclei. Overexpression of AS2 cDNA in transgenic Arabidopsis plants resulted in upwardly curled leaves, which differed markedly from the downwardly curled leaves generated by loss-of-function mutation of AS2. Our results suggest that AS2 functions in the transcription of a certain gene(s) in plant nuclei and thereby controls the formation of a symmetric flat leaf lamina and the establishment of a prominent midvein and other patterns of venation.

363 citations


Journal ArticleDOI
TL;DR: A novel antimicrobial peptide from the gill, bass hepcidin, is predominantly expressed in the liver and highly inducible by bacterial exposure, and indicated that the peptide is a new member of the hePCidin family.
Abstract: We report the isolation of a novel antimicrobial peptide, bass hepcidin, from the gill of hybrid striped bass, white bass (Morone chrysops) x striped bass (M. saxatilis). After the intraperitoneal injection of Micrococcus luteus and Escherichia coli, the peptide was purified from HPLC fractions with antimicrobial activity against Escherichia coli. Sequencing by Edman degradation revealed a 21-residue peptide (GCRFCCNCCPNMSGCGVCCRF) with eight putative cysteines. Molecular mass measurements of the native peptide and the reduced and alkylated peptide confirmed the sequence with four intramolecular disulfide bridges. Peptide sequence homology to human hepcidin and other predicted hepcidins, indicated that the peptide is a new member of the hepcidin family. Nucleotide sequences for cDNA and genomic DNA were determined for white bass. A predicted prepropeptide (85 amino acids) consists of three domains: a signal peptide (24 amino acids), prodomain (40 amino acids) and a mature peptide (21 amino acids). The gene has two introns and three exons. A TATA box and several consensus-binding motifs for transcription factors including C/EBP, nuclear factor-kappaB, and hepatocyte nuclear factor were found in the region upstream of the transcriptional start site. In white bass liver, hepcidin gene expression was induced 4500-fold following challenge with the fish pathogen, Streptococcus iniae, while expression levels remained low in all other tissues tested. A novel antimicrobial peptide from the gill, bass hepcidin, is predominantly expressed in the liver and highly inducible by bacterial exposure.

Journal ArticleDOI
TL;DR: Analysis of the enlarged collection of proteins traveling the Hrp pathway in P. syringae revealed an export-associated pattern of equivalent solvent-exposed amino acids in the N-terminal five positions, a lack of Asp or Glu residues in the first 12 positions, and amphipathicity in thefirst 50 positions, which was used to search the unfinished DC3000 genome.
Abstract: The ability of Pseudomonas syringae pv. tomato DC3000 to be pathogenic on plants depends on the Hrp (hypersensitive response and pathogenicity) type III protein secretion system and the effector proteins it translocates into plant cells. Through iterative application of experimental and computational techniques, the DC3000 effector inventory has been substantially enlarged. Five homologs of known avirulence (Avr) proteins and five effector candidates, encoded by genes with putative Hrp promoters and signatures of horizontal acquisition, were demonstrated to be secreted in culture and/or translocated into Arabidopsis in a Hrp-dependent manner. These 10 Hrp-dependent outer proteins (Hops) were designated HopPtoC (AvrPpiC2 homolog), HopPtoD1 and HopPtoD2 (AvrPphD homologs), HopPtoK (AvrRps4 homolog), HopPtoJ (AvrXv3 homolog), HopPtoE, HopPtoG, HopPtoH, HopPtoI, and HopPtoS1 (an ADP-ribosyltransferase homolog). Analysis of the enlarged collection of proteins traveling the Hrp pathway in P. syringae revealed an export-associated pattern of equivalent solvent-exposed amino acids in the N-terminal five positions, a lack of Asp or Glu residues in the first 12 positions, and amphipathicity in the first 50 positions. These characteristics were used to search the unfinished DC3000 genome, yielding 32 additional candidate effector genes that predicted proteins with Hrp export signals and that also possessed signatures of horizontal acquisition. Among these were genes encoding additional ADP-ribosyltransferases, a homolog of SrfC (a candidate effector in Salmonella enterica), a catalase, and a glucokinase. One ADP-ribosyltransferase and the SrfC homolog were tested and shown to be secreted in a Hrp-dependent manner. These proteins, designated HopPtoS2 and HopPtoL, respectively, bring the DC3000 Hrp-secreted protein inventory to 22.

Journal ArticleDOI
TL;DR: The isolation to homogeneity of the 160-kDa systemin cell-surface receptor (SR160) from plasma membranes of suspension cultured cells of Lycopersicon peruvianum is reported, resulting in recovery of 13 μg of pure receptor protein, representing an 8,200-fold purification.
Abstract: The isolation to homogeneity of the 160-kDa systemin cell-surface receptor (SR160) from plasma membranes of suspension cultured cells of Lycopersicon peruvianum is reported. The purification procedure resulted in recovery of 13 μg of pure receptor protein, representing an 8,200-fold purification. Gel blot analyses using SR160-specific antibodies confirmed that a cross-reacting protein in the membranes of suspension-cultured cells comigrates with both the native and a deglycosylated form of the radiolabeled receptor. Internal amino acid sequences of the purified protein facilitated the isolation of a cDNA clone encoding the 160-kDa receptor. The identity of the encoded protein as SR160 was further confirmed by a comparison of its sequence with a mass spectral fingerprint of the SR160 protein. The deduced amino acid sequence of SR160 revealed that it is a member of the leucine-rich repeat (LRR) receptor kinase family, closely related to the brassinolide receptor kinase, BRI1.

Journal ArticleDOI
TL;DR: The results demonstrate that the C-terminal transmembrane domain and short cytoplasmic tail of ZP2 and ZP3 are not required for secretion, but are essential for assembly and suggest a molecular basis for dominant human hearing disorders caused by point mutations within the ZP domain of α-tectorin.
Abstract: Many eukaryotic extracellular proteins share a sequence of unknown function, called the zona pellucida (ZP) domain. Among these proteins are the mammalian sperm receptors ZP2 and ZP3, non-mammalian egg coat proteins, Tamm-Horsfall protein (THP), glycoprotein-2 (GP-2), alpha- and beta-tectorins, transforming growth factor (TGF)-beta receptor III and endoglin, DMBT-1 (deleted in malignant brain tumour-1), NompA (no-mechanoreceptor-potential-A), Dumpy and cuticlin-1 (refs 1,2). Here, we report that the ZP domain of ZP2, ZP3 and THP is responsible for polymerization of these proteins into filaments of similar supramolecular structure. Most ZP domain proteins are synthesized as precursors with carboxy-terminal transmembrane domains or glycosyl phosphatidylinositol (GPI) anchors. Our results demonstrate that the C-terminal transmembrane domain and short cytoplasmic tail of ZP2 and ZP3 are not required for secretion, but are essential for assembly. Finally, we suggest a molecular basis for dominant human hearing disorders caused by point mutations within the ZP domain of alpha-tectorin.

Journal ArticleDOI
TL;DR: This study identified highly conserved amino acids specific to the beta-CASP family, some of which were unidentified to date, that are predicted to play critical roles in the enzymatic function and unravel particular sequence features which are likely to be involved in substrate specificity.
Abstract: A separate family of enzymes within the metallo-beta-lactamase fold comprises several important proteins acting on nucleic acid substrates, involved in DNA repair (Artemis, SNM1 and PSO2) and RNA processing [cleavage and polyadenylation specificity factor (CPSF) subunit]. Proteins of this family, named beta-CASP after the names of its representative members, possess specific features relative to those of other metallo-beta-lactamases, that are concentrated in the C-terminal part of the domain. In this study, using sensitive methods of sequence analysis, we identified highly conserved amino acids specific to the beta-CASP family, some of which were unidentified to date, that are predicted to play critical roles in the enzymatic function. The identification and characterisation of all the extant, detectable beta-CASP members within sequence databases and genome data also allowed us to unravel particular sequence features which are likely to be involved in substrate specificity, as well as to describe new but as yet uncharacterised members which may play critical roles in DNA and RNA metabolism.

Journal ArticleDOI
TL;DR: This study suggests that the P. sojae necrosis-inducing protein facilitates the colonization of host tissues during the necrotrophic phase of growth.
Abstract: Phytophthora sojae is an oomycete that causes stem and root rot on soybean plants. To discover pathogen factors that produce disease symptoms or activate plant defense responses, we identified putative secretory proteins from expressed sequence tags (ESTs) and tested selected candidates using a heterologous expression assay. From an analysis of 3035 ESTs originating from mycelium, zoospore, and infected soybean tissues, we identified 176 putative secreted proteins. A total of 16 different cDNAs predicted to encode secreted proteins ranging in size from 6 to 26 kDa were selected for expression analysis in Nicotiana benthamiana using an Agrobacterium tumefaciens binary potato virus X (PVX) vector. This resulted in the identification of a 25.6-kDa necrosis-inducing protein that is similar in sequence to other proteins from eukaryotic and prokaryotic species. The genomic region encoding the P. sojae necrosis-inducing protein was isolated and the expression pattern of the corresponding gene determined by RNA blot hybridization and by RT-PCR. The activity of this P. sojae protein was compared to proteins of similar sequence from Fusarium oxysporum, Bacillus halodurans, and Streptomyces coelicolor by PVX-based expression in N. benthamiana and by transient expression via particle bombardment in soybean tissues. The P. sojae protein was a powerful inducer of necrosis and cell death in both assays, whereas related proteins from other species varied in their activity. This study suggests that the P. sojae necrosis-inducing protein facilitates the colonization of host tissues during the necrotrophic phase of growth.

Journal ArticleDOI
TL;DR: In this article, the authors used metabolic labeling of staphylococcal cultures with [32P]phosphoric acid to reveal a P3 intermediate, which is the substrate for the cell wall anchoring reaction.

Journal ArticleDOI
TL;DR: The study indicates that ErbB4 represents a first receptor tyrosine kinase that undergoes intramembrane proteolysis and may mediate a novel signaling function independent of its canonical role as a receptor tyrose kinase.

Journal ArticleDOI
TL;DR: Based on the structure and amino acid sequence alignments, an adapted specificity conferring code for aryl acid activating domains is proposed, allowing assignment of substrate specificity to gene products of previously unknown function.
Abstract: The synthesis of the catecholic siderophore bacillibactin is accomplished by the nonribosomal peptide synthetase (NRPS) encoded by the dhb operon. DhbE is responsible for the initial step in bacillibactin synthesis, the activation of the aryl acid 2,3-dihydroxybenzoate (DHB). The stand-alone adenylation (A) domain DhbE, the structure of which is presented here, exhibits greatest homology to other NRPS A-domains, acyl-CoA ligases and luciferases. It's structure is solved in three different states, without the ligands ATP and DHB (native state), with the product DHB-AMP (adenylate state) and with the hydrolyzed product AMP and DHB (hydrolyzed state). The 59.9-kDa protein folds into two domains, with the active site at the interface between them. In contrast to previous proposals of a major reorientation of the large and small domains on substrate binding, we observe only local structural rearrangements. The structure of the phosphate binding loop could be determined, a motif common to many adenylate-forming enzymes, as well as with bound DHB-adenylate and the hydrolyzed product DHB*AMP. Based on the structure and amino acid sequence alignments, an adapted specificity conferring code for aryl acid activating domains is proposed, allowing assignment of substrate specificity to gene products of previously unknown function.

Journal ArticleDOI
TL;DR: Results indicate that hApg3p is an E2-like enzyme essential for three human Apg8p homologues, and co-immunoprecipitation of hA PG3p with hAPG3p indicates that h apg3P forms an E1·E2 complex with h aPG7p as in the case of yeast Apg3p and Apg7p.

Journal ArticleDOI
TL;DR: This review traces the origins and highlights the functional significance of the lipase gene family, overlaid on the background of this technical revolution, which represents one of the most populous families found in nature.

Journal ArticleDOI
TL;DR: CDB3 may act as a “chaperone” that maintains existing or newly synthesized destabilized p53 mutants in a native conformation and then allows transfer to specific DNA, which binds more tightly.
Abstract: Conformationally compromised oncogenic mutants of the tumor suppressor protein p53 can, in principle, be rescued by small molecules that bind the native, but not the denatured state. We describe a strategy for the rational search for such molecules. A nine-residue peptide, CDB3, which was derived from a p53 binding protein, binds to p53 core domain and stabilizes it in vitro. NMR studies showed that CDB3 bound to p53 at the edge of the DNA binding site, partly overlapping it. The fluorescein-labeled peptide, FL-CDB3, binds wild-type p53 core domain with a dissociation constant of 0.5 μM, and raises the apparent melting temperatures of wild-type and a representative oncogenic mutant, R249S core domain. gadd45 DNA competes with CDB3 and displaces it from its binding site. But this competition does not preclude CDB3 from being a lead compound. CDB3 may act as a “chaperone” that maintains existing or newly synthesized destabilized p53 mutants in a native conformation and then allows transfer to specific DNA, which binds more tightly. Indeed, CDB3 restored specific DNA binding activity to a highly destabilized mutant I195T to close to that of wild-type level.

Journal ArticleDOI
TL;DR: Data show that the cloned rat brain cDNA codes for a functional type 1 σ receptor, which exhibits severalfold higher affinity for clorgyline than for 1,3‐di(2‐tolyl)guanidine, it interacts with progesterone and testosterone, and its interaction with PPP is markedly enhanced by phenytoin.
Abstract: We have cloned a sigma receptor from rat brain and established its functional identity using a heterologous expression system. The cloned cDNA (1,582 bp long) codes for a protein of 223 amino acids that possesses a single putative transmembrane domain. The amino acid sequence of the rat brain sigma receptor is highly homologous to that of the sigma receptor recently cloned from guinea pig liver and a human placental cell line but is not related to any other known mammalian receptors. When expressed in HeLa cells, the rat brain sigma receptor cDNA leads to a two- to threefold increase in haloperidol binding, and this cDNA-induced binding is sensitive to inhibition by several sigma receptor-specific ligands. Kinetic analysis using the heterologous expression system has revealed that the rat brain sigma receptor interacts with haloperidol with an apparent dissociation constant (K(D)) of 3 nM. Functional expression of the cloned rat brain sigma receptor in HeLa cells also leads to an increase in the binding of two other sigma ligands, namely, (+)-pentazocine and (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine (PPP). Pharmacological characterization of the cloned rat brain sigma receptor reveals that it exhibits severalfold higher affinity for clorgyline than for 1 ,3-di(2-tolyl)guanidine, it interacts with progesterone and testosterone, and its interaction with PPP is markedly enhanced by phenytoin. In addition, transfection of MCF-7 cells, which do not express type 1 sigma receptor mRNA or activity, with the cloned rat brain cDNA leads to the appearance of haloperidol-sensitive binding of (+)-pentazocine, a selective type 1 sigma receptor ligand. These data show that the cloned rat brain cDNA codes for a functional type 1 sigma receptor. Northern blot analysis with poly(A)+ RNA isolated from various rat tissues has indicated that the sigma receptor-specific transcript, 1.6 kb in size, is expressed abundantly in liver and moderately in intestine, kidney, brain, and lung.


Journal ArticleDOI
TL;DR: It is demonstrated here that the short Tat CPP is taken up by a route that does not involve the HS proteoglycans, which is a major limiting step for the cellular delivery of macromolecules.
Abstract: Translocation through the plasma membrane is a major limiting step for the cellular delivery of macromolecules. A promising strategy to overcome this problem consists in the chemical conjugation (or fusion) to cell penetrating peptides (CPP) derived from proteins able to cross the plasma membrane. A large number of different cargo molecules such as oligonucleotides, peptides, peptide nucleic acids, proteins or even nanoparticles have been internalized in cells by this strategy. One of these translocating peptides was derived from the HIV-1 Tat protein. The mechanisms by which CPP enter cells remain unknown. Recently, convincing biochemical and genetic findings has established that the full-length Tat protein was internalized in cells via the ubiquitous heparan sulfate (HS) proteoglycans. We demonstrate here that the short Tat CPP is taken up by a route that does not involve the HS proteoglycans.

Journal ArticleDOI
TL;DR: Stabilin-1 and stabilin-2 define a novel family of fasciclin-like hyaluronan receptor homologues that might play a role in cell—cell and cell—matrix interactions in vascular function and inflammatory processes.
Abstract: MS-1, a high-molecular-mass protein expressed by non-continuous and angiogenic endothelial cells and by alternatively activated macrophages (Mphi2), and the hepatic sinusoidal endothelial hyaluronan clearance receptor are similar with respect to tissue distribution and biochemical characteristics. In the present study we purified these proteins by immuno- and hyaluronan-affinity chromatography respectively, sequenced tryptic peptides and generated full-length cDNA sequences in both mouse and human. The novel genes, i.e. stabilin-1 and stabilin-2, code for homologous transmembrane proteins featuring seven fasciclin-like adhesion domains, 18-20 epidermal-growth-factor domains, one X-link domain and three to six B-(X(7))-B hyaluronan-binding motifs. Northern-blotting experiments revealed the presence of both stabilins in organs with predominant endothelial sinuses such as liver, spleen and lymph node: stabilin-1 mRNA was also detected in organs with predominant Mphi2 cells, such as placenta, and in interleukin-4/glucocorticoid-stimulated Mphi2 cells in vitro. A polyclonal antibody made against human recombinant stabilin-1 confirmed the expression of stabilin-1 protein in splenic sinus endothelial cells in vivo and in Mphi2 in vitro. On the basis of high similarity at the protein level and the unique domain composition, which differs from that of all other known fasciclin-like proteins and hyaluronan receptors, stabilin-1 and stabilin-2 define a novel family of fasciclin-like hyaluronan receptor homologues that might play a role in cell-cell and cell-matrix interactions in vascular function and inflammatory processes.

Journal ArticleDOI
TL;DR: It is suggested that CAMTAs comprise a conserved family of transcription factors in a wide range of multicellular eukaryotes, which possibly respond to calcium signaling by direct binding of calmodulin.

Journal ArticleDOI
TL;DR: The conservation of amino acid residue sequences in 21 DNA-binding protein families is investigated and the effects that mutations have on DNA-sequence recognition are studied and it is reported that interactions with bases in the target sequence often follow a universal code of amino Acid-base recognition.

Journal ArticleDOI
TL;DR: Amino acid sequence homologies, phylogenetic analysis of non-structural and structural proteins and characteristic RSEs revealed that although chikungunya virus is closely related to o'nyong-nyong virus, it is in fact a distinct virus.
Abstract: In this study, the complete genomic sequence of chikungunya virus (CHIK; S27 African prototype) was determined and the presence of an internal polyadenylation [I-poly(A)] site was confirmed within the 3' non-translated region (NTR) of this strain. The complete genome was 11805 nucleotides in length, excluding the 5' cap nucleotide, an I-poly(A) tract and the 3' poly(A) tail. It comprised two long open reading frames that encoded the non-structural (2474 amino acids) and structural polyproteins (1244 amino acids). The genetic location of the non-structural and structural proteins was predicted by comparing the deduced amino acid sequences with the known cleavage sites of other alphaviruses, located at the C-terminal region of their virus-encoded proteins. In addition, predicted secondary structures were identified within the 5' NTR and repeated sequence elements (RSEs) within the 3' NTR. Amino acid sequence homologies, phylogenetic analysis of non-structural and structural proteins and characteristic RSEs revealed that although CHIK is closely related to o'nyong-nyong virus, it is in fact a distinct virus. The existence of I-poly(A) fragments with different lengths (e.g. 19, 36, 43, 91, 94 and 106 adenine nucleotides) at identical initiation positions for each clone strongly suggests that the polymerase of the alphaviruses has a capacity to create poly(A) by a template-dependant mechanism such as 'polymerase slippage', as has been reported for vesicular stomatitis virus.

Journal ArticleDOI
TL;DR: It is demonstrated that HLA-E also presents a peptide derived from the leader sequence of human heat shock protein 60 (hsp60), leading to a reduced capacity to inhibit a major NK cell population during cellular stress.
Abstract: Human histocompatibility leukocyte antigen (HLA)-E is a nonclassical major histocompatibility complex (MHC) class I molecule which presents a restricted set of nonameric peptides, derived mainly from the signal sequence of other MHC class I molecules. It interacts with CD94/NKG2 receptors expressed on the surface of natural killer (NK) cells and T cell subsets. Here we demonstrate that HLA-E also presents a peptide derived from the leader sequence of human heat shock protein 60 (hsp60). This peptide gains access to HLA-E intracellularly, resulting in up-regulated HLA-E/hsp60 signal peptide cell-surface levels on stressed cells. Notably, HLA-E molecules in complex with the hsp60 signal peptide are no longer recognized by CD94/NKG2A inhibitory receptors. Thus, during cellular stress an increased proportion of HLA-E molecules may bind the nonprotective hsp60 signal peptide, leading to a reduced capacity to inhibit a major NK cell population. Such stress induced peptide interference would gradually uncouple CD94/NKG2A inhibitory recognition and provide a mechanism for NK cells to detect stressed cells in a peptide-dependent manner.